| 
                
                
  
 
Research at Sofia University >
 
Faculty of Mathematics and Informatics >
 
Papers >
 
    
        
            
                
                Please use this identifier to cite or link to this item:
                http://hdl.handle.net/10506/335
             | 
         
     
     
    
    
| Title:  | Dynamic data assigning assessment clustering of streaming data |  
| Authors:  | Georgieva, Olga Klawonn, F. |  
| Keywords:  | Dynamic data assigning assessment clustering of streaming data |  
| Issue Date:  | 2008 |  
| Publisher:  | Applied Soft Computing- Special Issue on Dynamic Data Mining |  
| Citation:  | Georgieva O., F. Klawonn, 2008, Dynamic data assigning assessment clustering of streaming data, Applied Soft Computing- Special Issue on Dynamic Data Mining, v.8, No 4, pp.1305-1313 |  
| Abstract:  | Discovering interesting patterns or substructures in data streams 
is an important challenge in data mining. Clustering algorithm are very 
often applied to identify substructures, although they are designed to 
partition a data set. Another problem of clustering algorithms is that most 
of them are not designed for data streams. They assume that the data set to 
be analysed is already complete and will not be extended by new data. This 
paper discusses an extension of an algorithm that uses ideas from cluster 
analysis, but was designed to identify single clusters in large data sets 
without the necessity to partition the whole data set into clusters. The new 
extended version of this algorithm can applied to stream data and is able to 
identify new clusters in an incoming data stream. As a case study weather 
data are used |  
| URI:  | http://hdl.handle.net/10506/335 |  
| Appears in Collections: | Papers
  |  
  
    
    
     
    
    
    Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated. 
                    
                      
                 |