Research at Sofia University >
Faculty of Mathematics and Informatics >
Papers >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10506/25

Title: Learning to Recommend from Positive Evidence
Authors: Schwab, Ingo
Pohl, Wolfgang
Koychev, Ivan
Keywords: Adaptive recommendation interfaces
evaluation of methods
Issue Date: 2000
Publisher: Proceedings of the International Conference on Intelligent User Interfaces IUI2000
Citation: Schwab, I., Pohl, W. and Koychev, I. (2000). Learning to Recommend from Positive Evidence. Proceedings of the International Conference on Intelligent User Interfaces IUI2000, New Orleans, Louisiana, USA, ACM Press.
Abstract: In recent years, many systems and approaches for recommending information, goods, or other kinds of objects have been developed. In these systems, often machine learning methods are used that need training input to acquire a user interest profile. Such methods typically need positive and negative evidence of the user’s interests. To obtain both kinds of evidence, many systems make users rate relevant objects explicitly. Others merely observe the user’s behavior, which fairly obviously yields positive evidence; in order to be able to apply the standard learning methods, these systems mostly use heuristics that attempt to find also negative evidence in observed behavior. In this paper, we present several approaches to learning interest profiles from positive evidence only, as it is contained in observed user behavior. Thus, both the problem of interrupting the user for ratings and the problem of somewhat artificially determining negative evidence are avoided. The learning approaches were developed and tested in the context of the Web-based ELFI information system that is in real use by more than 1000 people. We give a brief sketch of ELFI and describe the experiments we made based on ELFI usage logs to evaluate the different proposed methods
URI: http://hdl.handle.net/10506/25
Appears in Collections:Papers

Files in This Item:

File Description SizeFormat
IUI2000.pdf108.91 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback