
Color Correction Acceleration Using
a Color Cube and OpenCL

Tenio Vachev

Faculty of Mathematics and Informatics,
St. Kl. Ohridski University of Sofia, Bulgaria

UP2 Technology, www.up2.eu
tvachev@up2.eu, tvachev@hotmail.com

Abstract. The article deals with the problem of real time color
correction on modern but not dedicated video hardware, suggesting a
new implementation of fast algorithm for color transformation utilizing
3D look-up tables. We focus on highly parallel nature of the proposed
method and employ the GPU to perform the color calculations side-by-
side. The paper is comparing the performance of the implementation of
the algorithm on the CPU and on the GPU.

Keywords: secondary color correction, tetrahedral interpolation, LUT,
color cube, GPU, parallel computing, OpenCL

1 Introduction

The modern hardware platforms - both central and graphics processors are
SIMD (Single Instruction Multiple Data Streams). They can be targeted through
a common abstraction and API. We are utilizing OpenCL to make parallel cal-
culations on both the CPU and the GPU in order to compare the performance
on them as a step towards the goal to make soft real-time color correction of
HD and 4K [1] resolution images available on systems with modern graphics
cards.

OpenCL (Open Computing Language) is a framework for developing and
executing parallel computation across heterogeneous processors (CPUs, GPUs
and other Digital Signal Processing (DSP) hardware). It is an open standard
managed by the non-profit consortium the Khronos Group [5]. OpenCL sup-
ports both data-parallel and task-parallel programming models. OpenCL gives
applications access to the Graphical Processing Unit for non-graphical comput-
ing. A key feature, however, is that it is designed not only as a GPU program-
ming platform, but also as a parallel platform for programming across a range
of computational devices. This fact makes it different to NVIDIA’s CUDA [6],
ATI’s Stream [7] and Microsoft’s DirectCompute which are proprietary and
designed to work only on their respective hardware platforms or in the case of
Microsoft coupled with an operating system and DirectX.

2 Tetrahedral Transformation

There are many interpolation algorithms that can be used to calculate a point
from an arbitrary set of input data. These general interpolation algorithms give

266 T. Vachev

good results, but at the same time we have to pay attention on their complexity
and performance. At absence of a general way to quickly find out which of the
known points lie closest to our target point, we must traverse them all before we
can interpolate. Other problems are present when close to the gamut limits, and
when all the nearest points are on one side of the target point.

One type of algorithm which meets our criteria is a tetrahedral transform
which calculates the value at a point in the domain by using functional values
at four known points in a three dimensional space. To speed up the calculations,
we choose a special set of points at equal distances to interpolate from. They are
arranged in rows and columns that go right up and down to the gamut limits.

This tetrahedral shape has three
faces parallel to the cube edges: one
parallel to each one of the axis. Each of
these edges has a known value of S (the
color transformation function) at each
end, so we can calculate the gradient of
S in the three perpendicular directions.
If we have the value in the first corner,
and the gradient in three perpendicular
directions, it is easy to calculate the
value at point (fx, fy, fz). The result of
the interpolation will be:

 Sxyz= (1-fx)Snxnynz
+(fx-

fy)S(n+1)xnynz
+(fy - fz)S(n+1)x(n+1)ynz

+
 +(fz)S (n+1)x(n+1)y(n+1)z

This formula is for the case fx ≥ fy ≥ fz. We can obtain the respective expres-
sions for the other cases by interchanging fx, fy and fz.

3 Color Cube

The input image is modified by controls manipulating the hue, saturation and
luminance components of the pixel color and filtering the color set we are work-
ing on. The color transformation goes in two stages - modifications are first ap-
plied on the bypass color cube, which in turn modifies the color information of
the image – interpolating it.

The color correction method relies on utilizing a 3D LUT (Look-up table)
[3] to modify color data in order to keep the color transformation in the input
color space, which we assume RGB. Instead of going to additional color spaces
as HSL [4], which are comfortable for a colorist to work with but require time
consuming transformations, for each pixel we are applying color modifications
to a relatively small number of colors and modifying the input data through this
subset by interpolating it.

Fig. 1

Color Correction Acceleration Using a Color Cube and OpenCL 267

4 Color Cube Applications

Calibration•

Let’s have an image Ω1, which represents the colors in the default color cube.
If we want to calibrate a device we can display Ω1 from the device resulting in
another image Ω2. By building a color cube which is a result of the difference
Ω1 - Ω2 and applying it to the output of the device we will prevent the color
distortion (if it is not drastic), caused by the very nature of the device.

Gamut Warning •

We can issue a warning if a color is moving into an area which cannot be dis-
played or reproduced on print film by applying the color cube to an image and
for example de -saturating the colors that are reproducible and leaving intact
those that are out of range.

Fixing Gamut Limits Specific to a Device•

If we take the digital intermediate process as an example we will start by us-
ing the colorist’s video monitor as a reference. We send the output of our color
corrector unlimited to the monitor but we will expect to apply a gamut limit
when we output to film.

Secondary Color Correction•

Secondary correction brings about alterations in luminance, saturation and
hue. The main objective of secondary controls is to adjust values within a nar-
row range while having a minimum effect on the remainder of the color spect-
rum and thus the rest of the image [5]. Color cubes provide this and which is
a plus – the nature of the interpolation results in gradual transitions between
colors. We can theorize that splitting the color channels in real time can add
another dimension to the movies e.g. make it 3D but more research should be
done in this new direction.

5 OpenCL Implementation

A kernel implementing tetrahedral interpolation was developed which was run
on the CPU and GPU. The kernel applies a color cube to an image by using
tetrahedral interpolation. The same algorithm was implemented using C# on
.Net Framework 4.0 for reference purposes.

The kernel consists of three functions:

#define ColorDepth 65535
#define NSteps 17

__kernel void colorcube(__constant uint4* inputImage,__constant uint4*
cube,__global uint4* outputImage) {…}
int sub(int x){return x/(ColorDepth/NSteps);}
float fract (int x){

int tmp = x/(ColorDepth/NSteps);
return ((float) x/(ColorDepth/NSteps) - tmp);}

268 T. Vachev

The input image, color cube and the output frame are in form uint4 which
consists of four unsigned integer values.

The sub function returns in which sub-cube the color lies in respect to the
mesh of the cube and the fract shows the relative position of the color in the
sub-cube itself. These are run for every color channel separately – R,G and B.

6 Performance Results

The PC test setup is:

Processor: Intel® Core™ i7 CPU Q 720 @ 1.60GHz
RAM: 12 GB DDR 3 in dual channel - running at 1333 MHz
Graphics Card: ATI Mobility Radeon 5870 RAM:1 GB Clock: 700MHz
OpenCL: OpenCL 1.0 ATI-Stream-v2.1 (145) Compute Units: 10
Graphics Driver: CAL 1.4.675 supports OpenCL

The test program was run for 1 and 1000 iterations of the kernel in order to
remove the reading and writing times of the data over PCI Express and to get a
notion on the time necessary for the calculations only. We also believe that the
kernel could be optimized a lot because it did not utilize the parallelism enough
and was heavily branched.

The results of the performance tests are shown in Table 1. (all times are in
seconds and per iteration):

Table 1

Iterations CPU (OpenCL) GPU (OpenCL) CPU (C#)
1 0.0460824 0.01465500 0.213
1000 0.0243477 0.00485557

The testing image was 1024x1024 with 48 bits per pixel which allows for
16 bit color channels.

The times spent per pixel for CPU and GPU respectively are 1.16898E-08
and 2.33125E-09 which lead us to conclude that with this kernel we can apply
a color cube to a 4K (4096 x 4096) image for 0.19612228 sec. on the CPU and
for 0.039111927 sec. on the GPU.

The results reinforce the belief that we can achieve great performance im-
provements utilizing the graphics processor. We can optimize the kernel which
will allow us to increase the image size, the color depth or both.

The real world scenarios are two:

The colorist works on an image and modifies it – in this case the image •
stays the same the look-up table changes
There is a feed of frames that needs to be modified in real-time (not •
rendered)

In the first scenario the image stays in the GPU memory and we can send
only the color cube to the GPU in order to be modified. The real time require-
ments are none existent – only the perception of the operator is involved – we
need it to happen “fast enough”.

Color Correction Acceleration Using a Color Cube and OpenCL 269

The calibration and secondary color correction applications however require
operations to be done in real time.

In the second scenario we have a constant stream of frames each coupled
with a color cube. We need to be able to send the image and the look-up table,
apply transformations and read back the output in time which is at most 25
times per second for PAL/SECAM and 29.97 for NTSC. At present we are able
to do this for HD images.

7 Conclusion

We can achieve 48bpp (bits per pixel) full HD image color correction on a
mainstream graphics card in soft real time.

The results show at least five times increase in performance utilizing the
graphics processor compared to running on the CPU and are highly encourag-
ing towards the goal to achieve “soft” real-time application of a color cube to
an image. By real-time we mean speeds of below 40 milliseconds per 4K image
with three 14-16 bits per channel.

This would mean that we can utilize the top end but mainstream
graphics cards for doing professional color grading and thus make accessible
more features that belong to dedicated professional video editing hardware.
Calibration of input and output devices is also possible within a tighter bud-
get.

There are areas that can be improved in the current solution. First and fore-
most the kernel could be optimized resulting in performance improvement that
will give us time to utilize more than one cube applied per image. A sequence
of color cubes applied in a cascading manner will give us much more flexibility
in real world applications.

Acknowledgements. The paper is supported by Grant 162/2010 from Sofia
University Research Fund.

References

Wikipedia. 4K Resolution. [Online]. http://en.wikipedia.org/wiki/4K_resolution1.
Pandora International Limited. [Online]. http://pogle.pandora-int.com/2.
Wikipedia. 3D Look Up Tables. [Online]. http://en.wikipedia.org/wiki/3D_LUT3.
Philippe COLANTONI. Color Spaces. [Online]. http://www.couleur.org/index.4.
php?page=transformations
Khronos Group. [Online]. http://www.khronos.org5.
NVIDIA. CUDA Zone. [Online]. http://www.nvidia.com/object/cuda_home_new.6.
html
AMD. ATI Stream Technology. [Online]. http://www.amd.com/us/products/ 7.
technologies/stream-technology

