[image: image1.png]e’

O it

vt

Resume
Тема : Aspect.Net – Aspect-Oriented Add-In for Microsoft Visual Studio 2003
MSc Candidate: Aleksandar Boichev Kolev
Mentor: assoc. prof. Sylvia Ilieva
Consultant:
Date: 14 February 2006
Keywords: aspect, advice, concern, weaving, decomposition, design, .Net, Microsoft, Visual Studio, add-in, AOP, AOSD, base functionality, RAIL, Aspect.Net
Since the invention of the computer programming languages have evolved from basic machine code and assembly languages to procedural and object-oriented (OO) languages. Each progression in technology has enhanced the ability to make clean separation of concerns in the source code, which in turn allowed easier development and maintenance. For the past decade the predominant way of programming has been using Object Oriented Programming (OOP). OOP can deal with real world problems because the object model can encapsulate real world objects. Unfortunately OOP has its own issues too. Some of them become noticeable when some of the concerns cross-cut. By ‘crosscutting’ we mean that there is more than one concern in one particular element of the system (elements vary depending on the decomposition paradigm; for OOP however those are – classes, methods, etc.) and at the same time there’re concerns which are wide spread over several system elements. The issues related to crosscutting can be classified as two major types:
· Tangled code – this occurs when several concerns are implemented within the same element of the system. As a result the code gets more complex to understand and maintain
· Scattered code – this occurs when an implementation of a concern is realized by writing code (either by duplication or not) which is integrated into many elements of the system. The result is a code which is scattered all over the system. This directly leads to code which is hard to maintain since the developer needs to have the knowledge about the whole system when doing corrections or other maintenance related tasks.
This thesis introduces a new concept for modularizing such crosscutting concerns, called Aspect Oriented Programming (AOP). AOP complements OOP by providing a higher level of abstractions, capable of encapsulating a crosscutting concern. This new abstraction is called aspect hence the name of the technique. On the one hand the usage of aspects makes the programming of crosscutting concerns much easier and comfortable. On the other it allows us to reuse a wide set of already built aspects, which in turn makes the whole software development much more efficient. The aspects themselves can be added, removed or even changed at compile time which makes the end result applicable for a lot of purposes.
Unfortunately not many of the current AOP tools support the Microsoft .Net platform. Considering the market share of the platform and the respective count of developers and development communities, the lack of an AOP tool which facilitates the using of AOP techniques in the everyday work of the developers is pretty obvious. For this reason, the main subject of this master thesis is the creation of an AOP tool Aspect.Net targeting the .Net platform and the most common IDE – Microsoft Visual Studio.

This dissertation presents some of the most famous AOP tools for the .Net framework. A comparison of their approaches and the one utilized by Aspect.Net has been shown, identifying all the areas in which Aspect.Net provides better usability and semantic features. The thesis also contains an overview of the .Net framework as an environment for Aspect Oriented Software Development (AOSD).
In the expose of this dissertation we cover all the functional and non-functional requirements that have to be implemented by Aspect.Net, so that it meets all the goals of the thesis. All the major design decisions taken in the course of the realization have also been described and reasoned in details. It has also been shown how each of the fore-mentioned requirements has been satisfied in terms of technical solutions.
In order to evaluate Aspect.Net we are comparing it to the other .Net AOP tools, taking into account the following criteria:

1. What type of weaving is supported – static or dynamic?

2. Is there a distinction between the aspects and the base functionality? Can the compilation of both happen separately?

3. What’s the input to the aspects weaver? If it is source code the developer needs access to the source of the application. If it works on the level of MSIL, then the developer needs only the compiled assembly to do the weaving.

4. Can the AOP system be applied to already existing applications?

5. Is there a way to formally prove the correctness of the weaving? Is there a way to determine whether the weaving of a particular aspect to a base functionality is correct?

6. Does the system support aspectual polymorphism?

In order to illustrate the benefits of using Aspect.Net, we show a real-world problem and solution into a separate chapter of the dissertation. Both of the possible approaches have been described – the standard OOP one and the Aspect.Net AOP approach. After a detailed analysis of the pros and cons of the approaches, it’s been proven that the one based on Aspect.Net is better with regard to all the different criteria listed above.

Based on the conclusions in the last chapter of the thesis, we’ve identified all the following potential areas for improvement in Aspect.Net:
· Semantics

· Weaving mechanism

· The add-in part of the tool
· Testing
· General improvements – optimizations, corrections/replacement of RAIL

· Compatibility with .Net 2.0 and MS Visual Studio 2005
1
1

