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Abstract. Emerging infectious diseases are a well-known threat to the wildlife and require complex research. 

There is a rapidly accumulating knowledge on the infectious disease of bats, named firstly White Nose 

Syndrome (WNS) and afterwards – White Nose Disease (WND), and its causative agent – the pathogenic 

fungus Pseudogymnoascus destructans. Although mass mortality of bats, known since a decade, is currently 

restricted to North America, the pathogen is of global concern as a potential threat to other hibernating bat 

populations. Therefore five years after the first comprehensive synthesis on the fungal ecology and relevant 

knowledge gaps (FOLEY ET AL. 2011), we decided to summarize the published information on the pathogen 

morphology, reproduction, ecological requirements, geographic distribution and systematic position. In 

addition, the present review compiles the available data on the affected bat species, mechanisms of WND, on 

the host response and on the effective treatment strategies with possible methods for fighting the pathogen to 

reduce the mortality in affected regions as well. Special attention is paid to the finding of the fungus in 

Bulgarian caves. 
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Emerging infectious diseases are a well-known menace to the wildlife, often causing mass mortalities of 

different organisms, threatening them with extinction (e.g. DASZAK ET AL. 2000; DE CASTRO & BOLKER 2004; 

HOYT ET AL. 2015 and citations there-in). The parasitological threats to biodiversity conservation have been 

defined also as a pathogen pollution (CUNNINGHAM ET AL. 2003). Among them is the White Nose Disease 

(WND), named after the White-Nose syndrome (WNS). It was first reported in 2006 and since then was 

continuously emerging (e.g. BLEHERT ET AL. 2009; TURNER AND REEDER 2009; FRICK ET AL. 2010; CAVEN ET 

AL. 2012 among the many others). It affected solely hibernating bat species and lead to regional population bats 

collapses with extensive local extinctions in North America (PIKULLA ET AL. 2012; FRICK ET AL. 2015). There it 

had been documented in 26 states of U.S.A. and 5 Canadian provinces and caused the death of around 6 

millions individuals (U.S. FISH AND WILDLIFE SERVICE 2015; FRICK ET AL. 2016). This zoonosis is comparable 

with the chytridiomycosis in amphibians, Colony Collapse Disorder in bees, and Snake Fungal Disease in 

snakes, and is probably the most large-scale extinction of mammals in modern history (CRYAN ET AL. 2010; 

HOYT ET AL. 2015). Its causative agent is the psychrophilic ascomycetous fungus Pseudogymnoascus 

destructans (Blehert et Gargas) Minnis et D. L. Lindner (Syn. Geomyces destructans Blehert et Gargas). Later 

on P. destructans was found in Europe and Asia, but with apparently little or no mortality among the bats from 

these regions and this lead to suggestions on the fungus origin from these areas and its long co-evolution with 

the bats there (e.g. PUECHMAILLE  ET AL. 2011C; ZUKAL ET AL. 2016). In addition to the unprecedented numbers 

of sick and killed animals (90-100% of the populations in some areas of North America), it was registered that 

the bats affected by WNS act strangely during cold winter months, including flying outside during the day and 

clustering near the entrances of caves and other hibernation areas (COLEMAN 2014). Recent evaluation of the 

ecosystem services provided by bats have revealed that many species offer unique and large-scale monetary 

benefits to agricultural industry (e.g. through pollination, controlling of pest insect populations in subtropical 

coffee and cacao plantations) and we have just started to understand their ecological role in natural ecosystems 

(e.g. top-down regulators of insect populations in forest habitats - for details see VOIGT & KINGSTON 2016). In 

the same time bats are extremely vulnerable to anthropogenic impact, especially nowadays, in the changing 

world of the Anthropocene (OP. CIT.). Therefore their conservation is of key importance for the environment and 

indirectly for the human society. Logically, the significance of the “novel fatal infectious disease of hibernating 

bats” provoked strong interest to the fungal pathogen and its effects, first generalized by FOLEY ET AL. (2011) 

with outlining of the relevant knowledge gaps. Many of these gaps have been fulfilled through the research 

carried during the last years, but meanwhile still other questions remained and also new questions raised. Thus, 

according to COHN (2012) bats and WNS continued to remain a conundrum. Therefore we decided to 

summarise the available information on P. destructans, on the mechanisms of disease and the host-pathogen 

interactions, including the host response, on effective treatment strategies and on the possible methods for 

fighting the pathogen with emphasis on the newest investigations. Special part of the review is targeted on the 

species findings in Bulgaria. 



1. The White Nose Syndrome (WNS), the White Nose Disease (WND) and the geomycosis: Historical 

notes, spread of the infection, terminology, affected bat species, descriptions of symptoms and causative 

fungal agent  

The White Nose Syndrome (WNS) was first documented on a photograph, taken on 16th of February 2006 in 

Howe's cave, New York (TURNER AND REEDER 2009; GARGAS ET AL. 2009) and named after the white fussy 

growth on bat wings, ears and muzzle (VEILLEUX 2008; REEDER AND TURNER 2008; TURNER AND REEDER 

2009; BLEHERT ETAL. 2009). It was also associated with unusual winter activity of bats and mass mortality in 

New York state (VEILLEUX 2008) and later on in North-eastern United States and South-eastern Canada, where 

it has led to severe population declines (BAT CONSERVATION INTERNATIONAL: HTTP://WWW.BATCON.ORG/, 

2015). The according disease was defined later by the presence of cupping erosions on the skin caused by 

infection by P. destructans, which is determined by histopathological examination (METEYER ET AL. 2009), 

although the name WNS was still used in the paper. Therefore, following FRICK ET AL. (2016) it has to be 

stressed that term WNS was originally used to describe the symptoms associated with bats in the field (visible 

fungal growth on skin surfaces, depletion of fat reserves, altered torpor patterns and aberrant winter behaviour)  

and had an original definiton of syndrome (e.g. VEILLEUX 2008; REEDER AND TURNER 2008; TURNER AND 

REEDER 2009) before the disease was fully characterized as a pathogenic cutaneous infection of skin tissues. A 

lot of confusion arose around application of the term WNS for infections occurring in Europe since they were 

pathologically similar to those in North America but did not include mass mortality or unusual winter behaviour 

(PUECHMAILLE ET AL. 2011C). Then CHATURVEDI & CHATURVEDI (2011) stated that WNS was neither an 

exclusive presentation nor an all-encompassing description of P. destructans infections in bats. They insisted 

that continued use of this terminology to describe bat disease carried the risk of undue focus on one symptom of 

what was likely to be a complex host– pathogen interaction. Therefore both authors, following the conventional 

way of formation of mycological and veterinary terms, proposed to use the term geomycosis  (from the fungal 

first name Geomyces and suffix –cosis [Gr.] used for a disease, morbid state) instead of WNS. However, in their 

proposal, the term geomycosis was adopted to describe infections caused by two different psychrophillic 

pathogens from the gender Geomyces Traeen - G. destructans and G. pannorum (Link) Sigler et J. W. Carmich.. 

The last is a rare pathogen which causes skin and nail infections in humans, and bone infections in dogs (for 

details and citations see CHATURVEDI & CHATURVEDI 2011). Practically, it could be applied to any other 

Geomyces pathogen find in future. The name geomycosis was used by some authors (e.g. PUECHMAILLE ET AL. 

2011B; PIKULA ET AL. 2012), but obviously in order to avoid new misinterpretations caused by this broader term 

and to reflect the taxonomic renaming of G. destructans in Pseudogymnoascus destructans, a new term - White 

Nose Disease (WND) - was coined as a synonym of White Nose Syndrome (WNS) by PAIVA-CARDOSO ET AL. 

(2014). This led to a certain new confusion among researchers regarding the distinction between the WNS and 

the WND and,  most probably, could be overcome by wider acceptance of the term WND (PAIVA-CARDOSO ET 

AL. 2014; FRICK ET AL. 2016). However, we have to mention that despite its original definition as a syndrome, 

the term WNS is still routinely used to refer the cutaneous infection caused by P. destructans. The 

terminological discussions on the appropriate usage of both terms from medical point of view, in which 



generally there is a difference between syndrome and disease, is out of the scope of the present review. 

Therefore, below both terms WNS and WND will be used in the way in which they were originally applied by 

the cited authors.  

The Little brown bat (Myotis lucifugus) is the most affected species by WND and WNS. Although a 

few examples of its summer colonies persisting in pockets around the affected areas have been documented 

(e.g. DOBONY ET AL. 2011; COLEMAN & REIHARD 2014), its numbers decreased by 90-91% in 5 states (TURNER 

ET AL. 2011; COLEMAN & REICHARD 2015) and, in case that no action is taken, a local extinction of the species 

by 2020 is predicted (FRICK ET AL. 2010). Great risk of extinction at a global scale is faced also by Northern 

long-eared bat Myotis septentrionalis (LANGWID ET AL. 2012), which since 2015 is enlisted as a federally 

threatened species by the U.S. Fish and Wildlife Service. However, no connection between colony size and 

disease impact has been observed (FRICK ET AL. 2015), probably because the initial mortality of the species due 

to WND was higher in larger colonies (LANGWIG ET AL. 2012). Except these two species, according to 

THOGMARTIN ET AL. (2013), COLEMAN (2014) and COLEMAN & REICHARD (2014) five more cave hibernating 

bats, including two endangered (EN) species have been confirmed with WNS: Eptesicus fuscus, Myotis leibii, 

Myotis grisescens (EN),  Myotis sodalis (EN) and Perimyotis subflavus.  

However, the presence of P. destructans or skin infection by the pathogen not obligatory coincides 

with lethality. It was proved that mortality rates differ by species even in America (TURNER ET AL. 2011) and 

that European and some Palearctic Asian populations have not been affected to mass mortality (e.g. 

PUECHMAILLE ET AL. 2011C; ZUKAL ET AL. 2016 and citations there-in). According to COLEMAN (2014) and 

COLEMAN & REICHARD (2014) bat species on which P. destructans has been detected with no confirmation of 

disease, were as follows: Lasiurus borealis, Myotis austroriparius, Lasionycteris noctivagans, Corynorhinus 

rafinesquii, Corynorhinus townsendii virginianus (EN) and one federally listed species was found in the 

affected area that have not yet been confirmed with WNS or fungal infection: Corynorhinus townsendii ingens 

(EN). Even earlier, during spring of 2010, DNA of P. destructans was detected in three additional species of 

hibernating bats (Myotis austroriparius, Myotis grisescens, Myotis velifer) west of the Appalachian Region (e.g. 

Missouri and Oklahoma), yet mortality was not observed (USGS 2010- cit. acc. to FLORY ET AL. 2012). 

However, it has to be underlined that in some cases observations of fungal presence without lethality or 

additional clinical signs of disease (e.g. bats flying during daytime in winter – for details see the text below) 

may simply reflect detection of the disease in its earliest stages (FLORY ET AL. 2012). Non-lethal WND is 

reported for the European species Myotis myotis (PIKULA ET AL. 2012), Myotis daubentonii, Myotis bechsteinii, 

Myotis nattereri, Myotis brandtti, Myotis emarginatus, Myotis dasygneme, Eptesicus nilssonii, Barbastella 

barbastellus, Plecotus auritus and Rhinolophus hipposideros (ZUKAL ET AL. 2014). Infections with P. 

destructans in Europe without evidence for mortality were reported also by BÜRGER ET AL. 2013 for Myotis 

myotis, M. oxygnathus and for Myotis blythii by PAIVA-CARDOSO ET AL. (2014). In addition to WNS 

documentation, the presence of P. destructans in North America was detected by swab sampling and 

quantitative PCR methods (MULLER ET AL. 2013) in Myotis austroriparius, Corynorhinus townsendii 

virginianus, Corynorhinus rafinesquii and Lasionycteris noctivagans (BERNARD ET AL. 2015), and in Europe – 



in Myotis mystacinus (MARTINKOVA ET AL. 2010) and Myotis blythii (Syn. M. oxygnathus - WIBBELT ET AL. 

2010). One additional species, M. escalerei/sp. A is classified as Gd-suspect via photographic documentation 

(PUECHMAILLE ET AL. 2011 C). Recently, the WND causative agent was found in North-eastern China (HOYT ET 

AL. 2016) in 6 more species of bats: Myotis macrodactylus, Myotis chinensis, Murina ussuriensis, Myotis petax, 

Myotis leucogaster and Rhinolophus ferrumequinum without causing mortality. With the increase of the scope 

of the investigated regions and studies on P. destructans by different methods, the species is detected in new 

areas and the list of affected or associated with the fungus species is increasing and is periodically updated at 

the Bat Conservation International website http://www.batcon.org. The geographic distribution of P. 

destructans and the reasons for lack of mass mortalities in the Palearctic are discussed below in the text and in 

$3. 

Recently there is no doubt that the WND causative agent is the fungus Pseudogymnoascus 

destructans (e.g. BLEHERT ET AL. 2009; METEYER ET AL. 2009; CHATURVEDI ET AL. 2010; CRYAN ET AL. 2010; 

LORCH ET AL. 2011; WARNECKE ET AL. 2012; ZHANG ET AL. 2014). Bats dying of WNS had no consistent 

significant pathologic changes in their internal organs (WIBBELT ET AL. 2013). The Pseudogymnoascus 

destructans infection (Pd infection hereafter) of bat wings, which represent the biggest surface of exposed skin 

in the body, is presumed to be a primary cause of WNS and subsequent mortality (CRYAN ET AL. 2010; FLORY 

ET AL. 2012; KNUDSEN ET AL. (2013). Unlike other fungal skin pathogens in endothermic animals, it invades 

deeply the host skin in addition to the skin superficial infections (METEYER ET AL. 2009). The hyphae of P. 

destructans are visible as a white cotton-like growth on the bat muzzle, wings and ears (e.g. BLEHERT ET AL. 

2009), where they penetrate hair follicles and the associated sebacious and apocrine glands. The Pd infection 

ranges from cup-like intraepidermal colonies with erosions to severe ulceration of the affected skin and deep 

invasion by fungal hyphae into the underlying dermal connective tissue (e.g. METEYER ET AL. 2009; PIKULA ET 

AL. 2012; WIBBELT ET AL. 2013). According to FRICK ET AL. (2016) the damage of the muzzles is less important 

than deep damage of the bat wings. The last leads to severe physiological disorders most notably related to the 

homoestasis (electrolytic and water balance) and thermoregulation with subsequent behavioral changes during 

hibernation (e.g. BLEHERT ET AL. 2009; BOYLES & WILLIS 2010; CASTLE & CRYAN 2010; CRYAN ET AL. 2010;  

LORCH ET AL. 2011; WILLIS ET AL. 2011; FLORY ET AL. 2012; BEN-HAMO ET AL. 2013; KNUDSEN ET AL. 2013; 

WARNECKE ET AL. 2013; VERANT ET AL. 2014). Neither behavioural (choosing roosts with high air humidity, 

licking condensed water from the fur, seeking warm conditions and⁄or insect prey to offset metabolic costs of 

remaining euthermic, etc.) nor physiological adaptations (e.g. metabolic warming of the bodies to euthermic 

conditions of ca. 35 
o
C by arousing from hibernation) are able to compensate fully the resulting bat 

dehydaration to which animals are especially sensitive during hibernation, when all the vital functions are 

minimized (e.g. BOYLES & WILLIS 2010; DOBONY ET AL. 2011; METEYER ET AL. 2011; STORM & BOYLES 2011; 

FLORY ET AL. 2012; BROWNLEE-BOUBOULIS & REEDER 2013). In addition, according to the summary in the 

WNS News in The Underground Movement (ANONYMOUS 2014) it is possible to suggest that arousing is 

provoked also by: 1) skin irritation and, once awakened, bats should groom in attempt to clear the fungus from 

the affected skin; or 2)  motivation of bats to leave the hibernaculum in an adaptive response to limit the spread 



of infection (reflecting either the movement of infected bats away from healthy ones or the movement of 

healthy bats away from infected ones). It has to be stressed that due to more frequent disrupting of the torpor 

WNS-infected bats may roost closer to the cave entrance than uninfected bats and roosting in clusters may 

reduce evaporating loss during torpor (OP. CIT.). Nevertheless that behavioral changes are an important part of 

the bat response to the pathogen infection, yet they are not fully understood. One of the reasons for this lies in 

the difficulties of observation of free-ranging bats in nature. Therefore it is not clear whether the behavioral 

changes detected so far represent adaptive or maldaptive responses (OP. CIT.). Continuous infrared videography 

in laboratory conditions allowed WILCOX ET AL. (2014) to make observations on the behavior of infected Myotis 

lucifigus that would have been impossible in the field and to obtain some rather unexpected results: 1) infected 

bats did not demonstrate an increase in grooming behavior compared to uninfected controls; 2) infected bats did 

not visit a water source in the enclosure more often than uninfected controls; 3) activity levels in infected bats 

were similar to those of uninfected controls in terms of latency to onset and frequency of activity; however, 

infected bats were active for less time than uninfected controls; 4) reduced rates of clustering were observed in 

infected bats compared to uninfected controls, with fewer bats in clusters and more bats roosting alone. These 

results, inspite of the need to be interpreted with caution due to some unpredictable differences in laboratory 

and wild conditions, provide additional insight into the mechanisms of disease responses. Up to know there is 

accumulated clear evidence that the Pd infection is connected with considerable fitness reduction and hypotonic 

dehydration and it has been suggested that infected bats were more often forced to interrupt their torpor to drink 

and to activate their immune system, which finally depletes their fat stores and causes death because of 

starvation and weakness (e.g. FOLEY ET AL. 2010; REEDER ET AL. 2012; WARNECKE ET AL. 2012; CRYAN ET AL. 

2013; LANGWIG ET AL.2015A). The multiple early arousals in mid winter and outdoor day flights are generally 

considered as a typical, but abnormal hibernation behaviour related with Pd infection and mass bat mortalities. 

In a few cases only, bats with Pd infection were capable to survive by arousing from hibernation (FLORY ET AL. 

2012).  

The lethal outcome can be enhanced or caused also by the chronic respiratory acidosis (MOORE ET AL. 

2013), oxidative stress (MOORE ET AL. 2013) and some immune system malfunctions (LEIBUNDGUT-LANDMANN 

ET AL. 2012). Paradoxically, all the adaptations that allow bats to conserve energy and survive the adverse 

winter conditions (such as decreased body temperature and roosting in big groups) also provide perfect 

conditions for the growth of the pathogen due to its specific ecological requirements (for details see $3).  

In this context, it is very important to understand the mechanisms underlying the ability of European 

bats to survive the infection. After the first genetic confirmation of the presence of  P. destructans in Europe by 

PUECHMAILLE ET AL. (2010), based on the 2009 samples from hibernating M. myotis in France, during the last 

few years it became clear that P. destructans is widely distributed all over the Old continent without causing 

mass morbidity or mortality. Up to now the fungus has been confirmed in Austria, Belgium, the Czech 

Republic, Croatia, Denmark, Estonia, France, Germany, Hungary, Luxemburg, the Netherlands, Poland, 

Portugal, Romania, Russia, Slovakia, Switzerland, Turkey (European part), Ukraine and the United Kingdom 

(e.g. KUBÁTOVÁ A ET AL. 2011; GEBHARDT 2010; MARTÍNKOVÁ ET AL. 2010; WIBBELT ET AL. 2010;  



PUECHMAILLE ET AL. 2010, 2011A-C; ŠIMONOVIKOVA ET AL. 2011; MESTDAGH ET AL. 2012; PIKULA ET AL. 

2012; SACHANOWICZ ET AL. 2014; BÜRGER ET AL. 2013; PAIVA-CARDOSO ET AL. 2014;  PAVLINIĆ ET AL. 2014; 

FRICK ET AL. 2016; ZUKAL ET AL. 2016) and recently was documented in Bulgaria (see details below in $6). So 

far, the species had not been recorded from Italy, Slovenia and Sweden (VOYRON ET AL. 2010; NILSSON 2012; 

MULEC ET AL. 2013).  

Two different hypothesis explained the disparity of mortality between North America and Europe: 1) 

the European fungus may be less virulent or European bats may have evolved immunity to it (WIBBELT ET AL. 

2010; PUECHMAILLE ET AL. 2011C); 2) differences in winter environmental conditions outside hibernacula in 

both continents (e.g. sustained subfreezing temperatures) were accepted as important co-factor  for WNS 

virulescense and disease mortality (FLORY ET AL. 2012). Although at first it was thought that infection with P. 

destructans in Europe was restricted to superficial skin layers only (WIBBELT ET AL. 2013), the later electron 

microscopic studies of bat wings revealed the same cup-like erosions characteristic of WNS on both sides of the 

Atlantic (BANDOUCHOVA ET AL. 2015). The last data, based on studies of bats from the Czech Republic 

(individuals from 6 species, PCR-positive for P. destructans), were the first which confirm the presence of 

severe WNS lessions aside of North America. The authors suggested that the European bats may be only 

tolerant but not resistant to the fungus and that the inter-continental differences in the outcome of WNS in bats 

in terms of morbidity/mortality may not be due to differences in the pathogen itself. Earlier it had been already 

proved that the experimental infections with European isolates of P. destructans cause mortality in American 

bat species (LORCH ET AL. 2011). The new data obtained by ZUKAL ET AL. (2016) provided evidence for both 

endemicity and tolerance to this persistent virulent fungus in the Palearctic, suggesting that host-pathogen 

interaction equilibrium had been established. After it became clear that the differences in bat response to the 

fungus were not due to differences in the pathogens, it is possible to suppose with a high probablility that the 

differences in the bat response to the fungus are mostly due to the factors such as environmental conditions in 

the roost, the bat or the cave microbiome, or species specific physiological reactions.  

In attempt to clarify the exact mechanisms of WND pathogenesis, O’DONOGHUE ET AL. (2015) 

conducted a thorough research on the fungus secretome and recorded 3 serine endopeptidases, 2 serine 

carboxipeptidases, an aspartyl endopeptidase and lipolytic enzymes such as lipases and phospholipases. The 

serine endopeptidases isolated were named Destructin 1, 2, and 3 respectively. Out of these Destructin 1 has the 

highest activity and is able to degrade β-sheets of collagen in contrast to collagenases which aim at the α-spirals. 

It shows homology with enzymes produced by the nematophitic fungi Dactylellina varietas Yan Li, K.D. Hyde 

& K.Q. Zhang and Arthrobotrys conoides  Drechsler for degradation of nematode cuticle (YANG ET AL. 

2007A,B), as well as with the endopeptidase isolated from Engyodontium album (Limber) De Hoog, better 

known as Proteinase K, and some peptidases from entomophilous fungi. P. destructans carboxipeptidases are 

similar to carboxipeptidases in Saccharomyces cerevisiae Meyen ex E. C. Hansen and Aspergillus niger Van 

Tieghem, and the aspartyl endopeptidase has a homolog in Candida albicans (C. P. Robin) Berkhout, where it 

serves for adhesion to the cells of the epithelium, degradation of host proteins, penetrating the mucose layer, 

and evading host immune response (NAGLICK ET AL. 2004). In many dermatophytic fungi serine, as well as 



aspartyl endopeptidases, are also able to degrade keratin (SANTOS & BRAGA-SILVA 2013). Subtilisin serine 

protease is recently identified in Batrachochytrium dendrobatidis Longcore, Pessier et D. K. Nichols, where it 

degrades antimicrobal peptides on frog skin. Potentially applicable inhibitors of Destructin action are PMSF, 

antipain, and chemostatin, the last reducing collagen degradation by 77%. 

 

2.  Pseudogymnoascus destructans morphology, reproduction and systematic position 

Morphological features of the pathogen mycelium are quite clear. On Saboraud Dextrose Agar (SDA) 

colonies are white at the margin and with central sterile white overgrowth (GARGAS ET AL. 2009). Conidial 

masses at colony centers are grey to grey-green and the colony reverse is uncoulored on Corn Meal Agar 

(CMA), and drab to hair brown on Sabouraud agar (GARGAS ET AL. 2009). Colonies on Malt Extract Agar 

(MEA) are initially white, but after spore production and aging they quickly darkened from the center to a dull 

gray, often showing a faint green hue (PUECHMAILLE ET AL. 2010). Similar characteristics are given also by 

MARTÍNKOVÁ ET AL. (2010) and ŠIMONOVIČOVÁ ET AL. (2011).  

The most characteristic feature of the fungus is the morphology of the anamorph and in 

particular of the asexual reproduction spores - conidiospores. On CMA they are 5–12 × 2.0–3.5 μm, 

tapering basally to 1.5–2.0 μm and apically to 0.5–1.5 μm, truncate with prominent scars at one or both ends, 

smooth and lightly pigmented; predominantly curved, sometimes oval, obovoid, or cymbiform, moderately 

thick-walled at maturity and readily seceding, borne singly at the tips, on the sides, or in short chains on 

verticillately branched conidiophores (GARGAS ET AL. 2009). Conidia on MEA are hyaline, irregularly curved, 

broadly crescent-shaped (typically 6–8 μm long and 3–4 μm wide), and narrowed at each end, one of which was 

broadly truncate, often showing an annular frill (PUECHMAILLE ET AL. 2010). The size of conidiospores 

according to ŠIMONOVIČOVÁ ET AL. (2011) is 4.6–6.0 x 1.5–3.1 μm and they are formed in short chains on 

branched erect conidiophores. Details on the fungal conidiophores are provided by GARGAS ET AL. (2009). 

There is only one species, known that to be macroscopically similar to P. destructans, which can be confused 

with it when growing on bats: Trichophyton redellii Minnis, Lorch, D.L. Lindner et Blehert (LORCH ET AL. 

2015). This species, described from Wisconsin, Indiana and Texas, seems to be native to the U.S.A. and as far 

as we know, does not cause any harm to the bats. The two species can be distinguished when the bats are 

illuminated from above with UV light (infections caused by T. redellii were not observed to produce an orange-

yellow fluorescence when exposed to ultraviolet light as has been reported for P. destructans infections by 

TURNER ET AL. 2014, LORCH ET AL. 2015), by histological examination (only P. destructans penetrates deep in 

the derma and forms cup-like erosions, whereas with infections of T. redellii, the fungal colonization pattern 

often has an active edge with a central zone of clearing, similar to what is observed in classic human ringworm 

infection - LORCH ET AL. 2015) or by observations of spores under the microscope (conidiospores of T. redellii 

are radially symmetric, obovate to pyriform, attached laterally to the sides or ends of hyphae and are sessile or 

on very short pedicels, while in P. destructans conidia are distinctive asymmetrically curved, or crescent-

shaped, borne at the ends of verticillately branched conidiophores - GARGAS ET AL. 2009, LORCH ET AL. 2015). 



According to our best knowledge, so far the teliomorph and sexual process of P. destructans remains 

cryptic (for details see the text below) but PALMER ET AL. (2014) suggested that the sexual recombination may 

allow the pathogen to adapt to its environment and hosts, despite its slow growth. 

An intriguing and at the same time controversial question is that of P. destructans actual systematics 

position and evolutionary origin. The fungus was first described in 2009 after being isolated from infected bats 

of the species M. lucifugus and M. septentrionalis (GARGAS ET AL. 2009). According to the phylogenetic tree 

built on the bases of small subunit (SSU) and internal transcribed spacer (ITS), the newly described fungus was 

placed in the ascomycetous genus Geomyces. There its closest relatives were Geomyces pannorum and 

Pseudogymnoascus roseus Raillo, according to the SSU analysis and Pseudogymnoascus verrucosus Rice et 

Currah, according to the ITS analysis, comparative sequences being searched through BLAST in GenBank.  

The species epitheton destructans was given because of the devastating effect the fungus had on bat 

populations. As a consequence, the main attention was turned towards studies of the fungus in the bat 

hibernacula and this led to the documentation of many Geomyces “species”. For example, JOHNSON ET AL. 

(2013) obtained eleven Geomyces isolates spread in seven clades and LORCH ET AL. (2013a) also recorded a 

significant diversity of Geomyces isolates in 24 soil samples from bat hibernacula based on sequencing of 

ribosomal RNA regions (ITS and PIS - partial intergenic spacer), in both studies the alignment of Geomyces 

was based on maximum-likelihood phylogenetic analysis. A special note has to be made that the samples in the 

last study were the same as those used for molecular analysis by LINDNER ET AL. (2011), in which many 

Geomyces isolates, including non-pathogenic to bats, were found.  

The lack of a modern taxonomic evaluation and of a phylogenetic framework of the group motivated 

MINNIS & LINDNER (2013) to apply a larger number of molecular markers and to revise the place of Geomyces 

destructans and its relatives in the Tree of Life. By sequencing and analysing the ITS region, large subunit 

(LSU), rDNA, MCM7, RPB2, and TEF1 from a diverse array of Geomyces and allies, MINNIS & LINDNER 

(2013) came to the conclusion that the fungus should be placed in the genus Pseudogymnoascus Raillo with the 

members of the Pseudogymnoascus roseus species complex as its closest relatives. True Geomyces species were 

defined as the members of the basal lineage based on phylogenetic placement of the type species, Geomyces 

auratus Traaen. However, the obtained results should be interpreted with caution because all the species used in 

the analyses originated from the U.S.A., where the pathogen was just recently introduced (LEOPARDI ET AL. 

2015). Therefore the demonstrated position of the WND causative agent may be biased by the lack of data from 

both Asia and Europe, where it originally evolved (e.g. ZUKAL ET AL. 2016) and further changes in its 

classification may be expected. 

Sexual reproduction in P. destructans is not yet observed and therefore it has to be stressed that the 

position of the species among Ascomycota is due only to the molecular data and therefore it is positioned 

Incertae sedis in Dothideomycetes of Ascomycota. The traditional mycological classification approach would 

require to keep it among the mitosporic fungi untill the observation of the sexual process and its relevant 

structures. In spite of the lack of direct observation of the sexual reproduction, it has to be outlined that PALMER 

ET AL. (2014) discovered and molecular characterized heterothallic mating system in fungal isolates from the 



Czech Republic. In the opinion of the authors, the coexistence of two mating types of P. destructans suggested 

the presence of mating populations in Europe. So far, fungal populations in North America are thought to be 

clonal, but the potential for sexual recombination indicates that continued vigilance is needed (OP.CIT.). Further  

work is needed to find and characterize the sexual cycle of P. destructans regarding both theoretical and 

practical needs. 

 

3. Pseudogymnoascus destructans ecology, transporting vectors and distribution 

Ecologically, Pseudogymnoascus destructans is considered to be a psychrophilic species with a growth 

temperature ranging from 3 to 20°C and no growth occurring at 24°C or higher (e.g. JOHNSON ET AL. 2013). The 

optimal growth has been pointed to be between 5 and 10°C (BLEHERT ET al. 2009), between 8 and 14°C 

(LANGWIG ET AL. 2012), between 10 and 14°C (VERANT ET AL. 2012), or between 12.5–15.8 
o
C (GARGAS ET AL. 

2009; TURNER ET AL. 2011). This “cold-loving” peculiarity is quite important for the fungus because it is similar 

to the temperature which can be found in cavernous humid hibernacula (e.g. caves, adits, cellars, old mines) of 

many bat species (e.g. WEBB ET AL. 1996; FLORY ET AL. 2012; BÜRGER ET AL. 2013) and therefore to the 

temperature of the bats in torpor (e.g. BOYLE & WILLIS 2010; HOYT ET AL. 2015) . 

In addition to the cold preferences, or perhaps in relation with it, is the typical for the species slow 

growth. According to GARGAS ET AL. (2009) colonies on CMA and SDA after 16 days reach diameter 1.0 mm 

at 3°C, 5 mm at 7°C, 8 mm at 14°C. No fungal growth has been observed at 24°C (GARGAS ET AL. 2009). 

An alarming fact regarding P. destructans ecology is its ability to survive and to grow not only on 

bats, but also in cave environment even in the absence of the host (LORCH ET AL. 2013a, b), which points on 

the ability of the infected caves to serve as pathogen reservoirs (RAUDABAGH & MILLER 2013). The ability to 

survive long in the absence of the host was experimentally proved in the lab by HOYT ET AL. (2014). This 

potential facultativity of P. destructans as a pathogen, greatly increases the risk of further WNS distribution 

and prevents bats to recolonize a site once after the pathogen has arrived (OP.CIT.). The ability of fungal 

pathogens like P. destructans to persist outside their host, likely increases their impact on populations and 

increases the risk of extinction (FISHER ET AL. 2012; HOYT ET AL. 2014).  

World-wide known is the great spectrum of enzymes in saprotrophic fungi and therefore it has to be 

expected that diverse enzymes should be found in P. destructans in case it is capable of saprotrophic activity. 

Even before the findings of LORCH ET AL. (2013A, B) and HOYT ET AL. (2014), it was shown in vitro that the 

fungus was able to produce b-glucosidase, N-acetyl-b-glucosaminidase, acid and alkaline phosphatases, 

esterase/esterase lipase/ lipase, leucine and vailine arylamidase, naphthol-AS-B1-phophohydrolase, various 

proteinases (albumin/casein/gelatin), and urease, while no enzymatic activity had been indicated for cystine 

arylamidase, a-chymotrypsin, alpha/beta galactosidase, trypsin, bglucoronidase, a-fucosidase, and a-

mannosidase (CHATUVERDI ET AL. 2010). Some of these enzymes (urease, proteinase /aspartyl/ and superoxide 

dismutase) exist in other pathogenic fungi (BROCK 2008; CASADEVALL ET AL. 2003) and are considered dual 

virulence factors (SMYTH ET AL. 2013). 



RAUDABAGH & MILLER (2013) examined six isolates from four Eastern and Midwestern states and 

demonstrated that the fungus is alkalitolerant, able of nitrogen utilization, and is capable of saprobically 

utilizing many complex carbon-containing cave substrates. They demonstrated that all six isolates were capable 

of growth and sporulation on dead fish, insect, and mushroom tissues. Regarding details of this study it has to 

be stressed that in neutral to alkaline environments, nitrate, nitrite, ammonium, and amino acids sources are all 

sufficient for good growth of the fungus, while uric acid is a potential nitrogen resource under alkaline 

conditions. Importantly, P. destructans demonstrated urease activity which had been proposed as a dual use 

virulence factor in the pathogenesis of Cryptococcus neoformans (San Felice) Vuill. and other pathogenic fungi 

by CASADEVALL ET AL. (2003) and HUNG ET AL. (2007). The results of RAUDABAGH & MILLER (2013) suggest 

that regardless of whether P. destructans is keratinophilic or keratinolytic, it is capable of generating a 

microenvironment in which keratinaceous substrates found in caves and cave soils (such as bird feathers and 

mammal hair and skin, incl. bat skin) are more susceptible to degradation and can serve as an important 

resource for P. destructans. The same authors showed that similar to keratinaceous substrates, chitinaceous 

substrates are important resources for the fungus. It cannot degrade chitin but rather utilizes other nutritional 

components found in chitinaceous substrates (e.g. proteins and lipids). SMYTH ET AL. (2013) demonstrated that 

P. destructans could penetrate dead moss cell walls. Taking this into account, RAUDABAGH & MILLER (2013) 

proved that the fungus could produce b-glucosidase and therefore, most probably, it could degrade cellulosic 

substrates. However, they stated that although cellulosic substrates could be potential substrates for P. 

destructans, they are not suitable for long-term colonization in caves or portions of caves that have frequent 

moisture fluctuations.  

REYNOLDS & BARTON (2014) also compared the saprotrophic activity of the pathogen and other 

closely related species from soil and showed that all the enzymes required for saprotrophic growth (especially in 

peculiar cave conditions where light and substrate resources are limited) are present in P. destructans. Among 

them are the cellulases and lipases which decompose plant debris, chitinases which degrade dead insect bodies 

and ureases which are very useful for utilizing nitrogen from bat urine or guano. The obtained data characterize 

P. destructans as a generalist decomposer and suggest that it may evolved not from dermatophytic, but from 

saprotrophic cave fungi. The reduced activity of the enzymes described in comparison to the enzymes of 

obligate saproprophs, was taken by the authors as a sign for reduced selective pressure on the ability to use 

decaying matter as a primary source of food, associated with its long evolution as a pathogen. REYNOLDS & 

BARTON (2014) proved low chemolitic activity and explained it as an aid in survival on the nutrient-limited 

surface of the bat wing membrane. Doubtless, these statements could be proved by further genetic studies which 

could also  potentially provide a molecular clock for the timing of the movement of P. destructans out of the 

soil/cave sediment environment into its host (OP. CIT.). 

Through controlled experiments, it was determined that WNS is spread by direct contact with its 

causative fungus (LORCH et al. 2011). Most evidence show that the main vector of the disease are the animals 

themselves (for example, new WNS sites are situated along bat migration routes - REYNOLDS AND BARTON 

2013), but the facultative pathogen character of the fungus suggests that the infection via contact with 



contaminated substrate is surely possible. According to LANGWIG ET AL. (2015B), when P. destructans is 

introduced to a new site, it is found only in close proximity to bats during the first year, but the next season it is 

already found in half of the environmental samples even far from the animals. The second year is also 

characterized by an elevated risk of mortality as bats get infected right after they enter the winter roost. In 

attempt to estimate the risk of extinction for whole colonies, REYNOLDS ET AL. (2015) used a mathematical 

model of P. destructans distribution considering the quantity of organic carbon in the soil, the length of the 

hibernation season and the availability of substances that inhibit the growth of the fungus. The results showed 

that P. destructans was most abundant in substrates rich in organics, especially cellulose, although growth was 

possible even in a silicate sand with a very low organic content. Especially alarming is the fact that according to 

the model, if no inhibitors are present, the pathogen can be found in the environment a 100 years after its 

introduction even in the absence of bats, and if inhibition is taken into account it can survive in substrates with 

high organic content. However, the main factor on which bat survival depends, however, is the length of the 

hibernating season – according to the model,  period of 120 days seems to the critical, although other authors 

point out 102 days (LORCH ET AL. 2011). A question remains if a minimal amount of P. destructans persists in 

the organisms of bats that survived the infection during the summer. 

Another possible vector for the fungal mycelia and spores are the wing mites from the family 

Spinturnicidae, which are ectoparasites of hibernating bats (LU 

AN ET AL. 2016). Doubtless further research will confirm or reject this hypothesis, which points that in 

addition to the transport of fungal propagules, mites may facilitate entry of the fungal hyphae through the 

epidermis of bats via injuries caused by their bites. These injuries could explain previous findings of virulent 

skin infections by BANDOUCHOVA ET AL. (2015) when no signs of fungus keratinolytic activity were observed in 

the stratum corneum of bats under ultramicroscopy. The trnmission of the fungus by parasites logically explains 

also the earlier observations of higher infections in bats, which overwinter in closer clusters (e.g. ZUKAL ET AL. 

2014). 

The macroecological interactions between bats and the fungus were invesyigated by FRICK ET AL. 

(2015). Using data from 1118 winter roosts of 16 bats species on both continents collected for the past 30 years, 

the authors show that bat population density in Europe is similar to that in America after the introduction of P. 

destructans, suggesting that the fungus could potentially be an important factor that shaped the biogeography of 

bats in Europe. 

The origin of P. destructans was long debatable. Some years ago FLORY ET AL. (2012) still pointed out 

two possible, but controversial opinions, based on te patterns of WNS spread: that the fungus may be an exotic-

invasive species that was recently introduced to the United States (WIBBELT ET AL. 2010) or that the fungus is 

native and only recently became pathogenic to bats (PUECHMAILLE ET AL. 2011C). Recently it is strongly 

believed that introduction from Europe and not evolution in situ led to the appearance of P. desctructans in 

America (e.g. WARNECKE ET AL. 2012; LEOPARDI ET AL. 2015). LEOPARDI ET AL. (2015) sequenced and 

compared 8 genomic loci of fungal isolates from both continents and showed that while European isolates are 

highly polymorphic (8 different haplotypes), there is almost no variation among North American isolates. 



Moreover, the haplotype that is most common in Germany, France, Belgium and Luxembourg is 100% identical 

to the one from the U.S.A. and Canada which points at Western European populations of P. destructans as the 

source of the American isolate. KHANKET (2014) found that the population in Canada had the same genotype as 

those from the US and there was also evidence of minor genetic variation in three Canadian isolates. All these 

results agree with the photographic data on the presence of white fungal growth on bats in Europe much before 

WND was known, as well as with the fact that the fungus is not associated with mass bat mortality in the Old 

Continent (PUECHMAILLE ET AL. 2011B, C; WIBBELT ET AL. 2013). Newest investigations by ZUKAL ET AL. 

(2016) support this opinion and even spread the area of the Palearctic origin of P. destructans to the Asian 

territory and authors claimed the endemicity of the species. 

Taking into account that bat movements across the Atlantic are rare events on geological times, it is 

possible to suggest with a high probability that the pathogen was firstly introduced in New York state by a 

human, most probably a tourist, caver or researcher that visited caves in Europe prior to visiting Howe's cave in 

New York (PUECHMAILLE ET AL. 2011C; LEOPARDI ET AL. 2015). All this once more emphasises the need of 

strict control on the transport of biological materials between continents and of high hygiene culture for cavers 

and tourists visiting relatively isolated ecosystems. 

 

4. Bat immune and neuroendocrinological response to WNS/WND 

The topic of immunity to fungal infections is of interest and understanding the nature and function of the 

immune response to fungi is an exciting challenge that might set the stage for new approaches to the treatment 

of fungal diseases, from immunotherapy to vaccines (ROMANI 2011). The past decade has witnessed the 

development of a wide range of new approaches to elucidate events that occur at the host-fungus interface (OP. 

CIT.). Hibernation is generally associated with a significant reduction in all metabolic processes and profoundly 

affected immune system regulation, but little is known on how bat immune system function and vary seasonally 

(e.g. REEDER & MOORRE 2013 and citations there-in). Therefore it is of particular interest to study the immune 

response to P. destructans in bats. Successful resistance against pathogen invasion involves the coordinated 

elevation of multiple innate and adaptive immune mechanisms but there is a paucity of information regarding 

bat immune responses against fungal pathogens in paricular (e.g. MOORE ET AL. 2013; REEDER & MOORE 2013; 

RAPIN ET AL. 2014 and citations there-in). From one side, dermatophytic fungi are known to activate the innate 

immune response, which slows down the growth of the pathogen and leads to some tolerance towards it (NETEA 

ET AL. 2008). On the other hand, most often the infection can be cleared completely after the activation of the 

adaptive immunity, but it is exactly the adaptive immunity that is most suppressed during hibernation in 

different from bats mammals (e.g. CAHIL ET AL. 1967; MANIERO 2000; BOUMA ET AL. 2012; SIECKMANN ET AL. 

2014). Taking this into account, it might be not surprising that P. destructans can overcome host defensive 

mechanisms. In any case, before providing the recent achievements on the topic, we would like to stress that yet 

many results are contradictory, some  processes respond to Pd infection/WNS to different degrees and even in 

different directions and therefore underlying mechanisms and their biological meaning are yet to be described 

(e.g. MOORE ET AL. 2013). 



Quite recently FIELD ET AL. (2015) proved that WNS caused significant changes in gene expression in 

hibernating bats including pathways involved in inflammation, wound healing and metabolism. The comparison 

of the transcriptome of healthy and Pd infected M. lucifugus by these authors shows elevated levels of lectin 

receptors of C-type such as CLEC4D (MCL), CLEC4E (MINCLE), CLEC7A (dectin-1), CLEC6A (dectin-2) 

and of Toll-like receptor 9. They are a part of the innate immune response and are typical for the initial stages of 

other fungal infections (e.g. like those caused by Candida albicans). Up-regulated are also the levels of multiple 

cytokines, including interleukins IL-1β, IL-6, IL-17C, IL-20, IL-23A, IL-24, and G-CSF and chemokines, such 

as Ccl2 and Ccl20 and G/H synthase 2 (cyclooxygenase-2), that generate eicosanoids and other nociception 

mediators. However, monocytes, neutrophils, and active T-helper cells, which promote the adaptive immunity, 

have been not detected, which is on conformity with the results of other histological investigations. The may be 

due to the shortness of euthermic periods or to the specific inhibition of hemotactic signals provoked by P. 

destructans, which is the case with the amphibian infecting fungus Batrachochytrium dendrobatidis. Up-

regulation of interleukins 1 and 6, kallikrein-6, katepsin S, and the enzymes cyclooxygenase-2 and 

phospoholipase A2, which participate in the acute inflammation processes, has mostly negative effects on bats 

as it increases wing membrane damage and interrupts torpor. Activation of genes from the lipid metabolism is 

also detrimental as it is associated with faster depletion of fat reserves crucial for surviving the winter. 

However, no significant levels of antibodies against P. destructans have been detected in European bats  

infected with the pathogen, suggesting that it is not the adaptive immune response that accounts for the 

differences in WNS survival rate on the two continents and on some remnant American populations, which may 

be developing resistance to WNS (JOHNSON ET AL. 2015).  

A research by MOORE ET AL. (2013) finds elevated levels of circulatng leukocytes in WNS-affected M. 

lucifugus – an attempted defence against P. destructans, probably related to documented changes in 

thermoregulatory behaviors of diseased bats. Although this response is not enough to clear the pathogen, it 

raises the possibility that some bats may be better equipped to resist infection than others (PUECHMAILLE ET AL. 

2011c) with the potential for directional selection and evolution of the immune defence towards the fungus. 

Еаrlier studies of Moore et al. (2011) showed that bats affected by WNS experience both relatively elevated and 

reduced innate immune responses depending on the microbe tested, although the cause of observed 

immunological changes remains unknown. Additionally, considerable trade-offs may exist between energy 

conservation and immunological responses. Relationships between immune activity and torpor, including 

associated energy expenditure, are likely critical components in the development of WNS. 

Since the physiological adjustments which influence energy balance and thermoregulation before, 

during and after hibernation result from precise regulation of neuroendocrine activity, the euroendocrinological 

research of bats is of great importance in the attempts to improve understanding of mechanisms underlying 

mortality and test the potential of bat populations to evolve resistance or tolerance in response toWNS (WILLIS 

& WILCOX 2014). The last authors reviewed the effect of three key hormonal mechanisms – leptin, melatonin 

and glucocorticoids – in hibernating animals and proposed hypotheses regarding bats WNS-effects on these 

systems and their evolution. They suggested that bats with the least sensitivity to leptin (a lipostat hormone 



associated with metabolism, feeding behaviour and therefore with winter energy balance in bats) could 

accumulate more mass (larger fat stores) in the fall prior to hibernation and therefore would have a better 

chance of surviving WNS and reproduce in the following spring compared to other individuals (WILLIS & 

WILCOX 2014). Thus, the bats characterized by the lowest leptin levels in autumn will exhibit greater survival 

from WNS and relatively high reproductive rates in spring and it was predicted that fall leptin sensitivity should 

be lower in post-WNS populations compared to populations that have not yet been affected. In relation to 

melatonin, as a signal influencing seasonal and diurnal biological rhythms, they predicted that bats affected 

byWNS may have elevated levels of melatonin during the later stages of infection as they reduce clustering and 

begin to synchronize arousals with the dark phase, i.e. there should be detectable differences in melatonin 

secretion and sensitivity between pre- and post-WNS bat populations. In relation to glucocorticoids (GCs - 

steroid hormones underlying the physiological stress response), WILLIS & WILCOX (2014) predicted that bats 

with WNS should exhibit increased GCs levels beyond those normally seen in healthy, undisturbed hibernating 

bats and perhaps similar to bats frequently disturbed by predators (or researchers mimicking predators). Thus at 

least part of the explanation for increased arousal frequency in bats with WNS reflects a heightened 

physiological stress response. 

GCs might also influence the healing and recovery process for the small proportion of bats that survive 

WNS, particularly if the disease represents a chronic stressor. Contrary to the logical opinion that if infected 

animals survive the winter period, the rapidly activated immune system under euthermic conditions will easily 

fight WNS and eradicate P. destructans from the organism, it was shown that the sudden reversal of immune 

suppression in bats upon the return to euthermia is a great risk for them  (METEYER ET AL. 2012). The authors 

proved that some of the infected individuals, which survived winter with WNS, in spring could manifest 

immune reconstitution inflammatory syndrome (IRIS) and this possesed a great risk for bats emerging from 

hibernation (METEYER ET AL. 2012). As their immune function is restored in spring and suddenly encounters the 

pathogen, beginning to combat the fungal infection, the rapid neutrophilic inflammatory response can, 

paradoxically, cause severe negative pathology (extensive necrosis and oedema) and likely mortality for some 

individuals (METEYER ET AL. 2012). As with IRIS in humans, the intensity and extent of tissue infection 

determines if this exuberant inflammatory response will cause severe tissue damage and death, or will eliminate 

the pathogen and lead to host recovery. 

 

5. “Fighting” Pseudogymnoascus destructans and WNS 

Due to the key role that bats play in the ecosystems, strategies for limiting P. destructans distribution or 

decontaminating of the already infected sites in America, are of crucial importance. After accepting of the 

U.S.A. National WNS Management Plan (COLEMAN ET AL. 2011) designed to organize fighting against the 

disease, various solutions to prevent the WNS epidemic have been offered. Some of them included spreading of 

vaccines or antibiotics in the roosts, removing infected individuals from the populations, or closing caves and 

changing their microclimate so that it is no longer optimal for the development of P. destructans (e.g. LORCH ET 

AL. 2012, 2015; CORNELISON ET AL. 2014A). However, these classic disease management practices seem not to 



be realistic options for management of disease in the wild bat populations with their peculiar ecology and 

obviously can affect other cave inhabitants, and provoke other undesirrable changes of the cave ecosystems. 

Therefore the most promising seems to be the implementing of biological control on the pathogen growth, 

where a special requirement to the control means is they to have inhibitory activity at low levels. Soils and cave 

sediments in particular, which host numerous microbes that compete with each other, are likely to offer a ready 

set of fungicides that wait to be tested.  

The volatile organic compounds (VOCs) produced mainly by soil bacteria all over the globe and, most 

importantly, acting as fungicids even without a direct contact, became a foreground in the research for finding 

novel treatment options and tools to combat the devastating WND (e.g. KERR ET AL. 1999; ZOU ET AL. 2007; 

CORNELISON ET AL. 2014A). The last authors tested the efficacy of several VOCs produced by the genera 

Pseudomonas and Bacillus with broad spectrum of antifungal activity proved earlier by XU ET AL. (2004) and 

FERNANDO ET AL. (2005). Laboratory analyses of CORNELISON ET AL. (2014A) showed successful inhibition of 

P. destructans growth by decanal, 2-ethyl-1-hexanol, nonanal, benzothiazole, benzaldehyde and N,N-

dimethyloctylamine in concentrations below 1 ppm. In addition to the checking the effects of individual VOCs, 

the last authors investigated formulations for synergistic effects. Most effective were the synergistic actions of 

2-ethyl-1-hexanol combined with benzaldehyde, decanal, N,N-dimethyloctylamine and nonanal respectively, 

the last pair being able to inhibit the growth of the fungus by 95% for 14 days after inoculation. The long-term 

eficacy of studied VOCs in low quantities, and their possibilities to be applied directly (without modifications 

as they have been purchased in pure liquids) in combination with the increased inhibitory effect at low 

temperatures (ca. 4 
o
C) similar to these in hibernacula, proved by the authors, classifies these bacterially derived 

VOCs as important potential agents of biological control. On the other hand, this study stimulates further 

research on similar compounds in order to enlarge the potential pool of VOCs, which are able to inhibit the 

growth of P. destructans and thus to disrupt its transmission. Moreover, the stronger effect of the synergistic 

blends of VOCs mixtures in comparison with pure derivates provides better opportunities for creation of 

powerful treatment tools and supports the idea of using soil-based fungistasis in fight against Pd infection 

(OP.CIT.). A problem that still remains to be solved is the spread of these compounds in vivo, and the same 

authors suggest the use of aerosol sprays similar to the commercially available air fresheners after proper 

scientific assessments and approvals. Neverthelees of the means of application, we should always consider to   

stuck as close as possible to natural biological processes in attempt to diminish to lowest rates the negative 

impact on the cave ecosystems that are as unique, as fragile. 

The identification of inducible biological agents with contact-independent anti-P. destructans activity 

is a milestone in the development of viable biological control options for in situ application (CORNELISON ET 

AL. 2014B). The authors tested the widely distributed bacterium Rhodococcus rhodococcus, which is often used 

for bio-remediation or for slowing down fruit ripening (PIERCE ET AL. 2011). CORNELISON ET AL. (2014B) 

provided the first example of contact-independent antagonism of this devastating wildlife pathogen obtained 

after evaluation of various application methods of induced cells of R. rhodochrous strain DAP96253 for 

potential in situ application, including whole-cell application, non-growth fermentation cell-paste, and fixed-cell 



catalyst at psychrophillic conditions (at temperatures 15°C, 7°C and 4°C). The non-growth fermentation cell-

paste demonstrated persistent inhibitory activity and represented the most promising application method 

evaluated. It was 100% effective against P. destructans for more than 80 days, did not require additional growth 

media, and did not pose a significant threat to the natural cave ecosystems (OP. CIT.). The first application of the 

method was in Mark Twain Cave in Hannibal, Missouri (http://www.nature.org/ourinitiatives/regions/ 

northamerica/unitedstates/tennessee/success-in-treating-white-nose-syndrome.xml.): in May 2015, 75 M. 

lucifugus were released back into the wild after successful R. rhodococcus treatment and researchers hope that 

very soon they will be able to apply the method in a much larger scale. Details of this apparently successful trial 

are yet to be published. 

As well as bacteria, fungi can also compete with P. destructans. Candida albicans secretes 

trans,transfarnesol (TT-farnesol) – a sesquiterpene and a quorum-sensing molecule with antifungal properties 

(e.g.WEBER ET AL. 2008; SEMIGHINI ET AL. 2006; BRILHANTE ET AL. 2013). TT-farnesol is effective against 

other important pathogens such as bacterium Streptococcus mutans (JEON ET AL. 2011) and therefore it was 

tested in different concentrations against P. destructans by RAUDABAUGH & MILLER (2015). Although it does 

not actually kill P. destructans, even in concentrations that are naturally occurring in the environment, TT-

farnesol effectively inhibits fungal growth to permit bat survival till the end of the hibernating season (OP. CIT.). 

Another potential solution for WNS control is given by the microorganism communities 

inhabiting bat skin. HOYT ET AL. (2015) tested 133 bacterial morphotypes, all belonging to the genus 

Pseudomonas, isolated from two bat species – Eptesicus fuscus and Myotis lucifugus. Six of them successfully 

inhibited P. destructans growth in the lab. The advantages of these “treatment tools” in addition to their anti-

fungal properties, which make them promising candidates to be possible probiotic protectors of bats against 

WNS are the ubiquitous character of Pseudomonas and its ability to use the mycelial networks of fungal 

colonies as a mean of transport can be useful for in situ implementation (WARMINK et al. 2011). Previous 

experiments with members of the same genus isolated from the environment have also been successful and 

proved possibilities to use natural antagonists of P. destructans which inhibit its growth and/or limit its effects 

on bats. FRITZE ET AL. (2012) tested in vitro the anti-fungal properties of Pseudomonas veronii-like PAZ1, 

isolated from the mycelium of the causative agent of the European black alder die-off Phytophthora alni Brasier 

et S. A. Kirk. It showed significant inhibition of P. destructans on 3 different media, up to complete growth 

arrest on potato-dextrose agar with yeast extract (mPDA). The authors supposed that the antagonistic effect are 

due to bacterial peculiar secondary metabolites - cyclolipodepsipeptides, which opens the future possibilities for 

their isolation and individual testing.   

In the present review, we do not discuss the substances from and relations between bacteria and other 

fungi found in hibernating sites together or near to P. destructans, since there is still no knolwedge on the role 

of these organisms in fungus life and their relationships (e.g. BARLOW ET AL. 2009; AMELON & KNUDSEN 2010; 

CHATUVERDI ET AL. 2010; CRYAN ET AL. 2010). Studies on the microbiota of bats have focused on gut and fecal 

microbiota, with little attention given to the external microbiota (e.g. ZANOWIAK ET AL. 1993; MUHLDORFER 

2012; PHILLIPS ET AL. 2012). KOOSER ET AL. (2015) showed for first time biogeographic differences in the 

http://www.nature.org/ourinitiatives/regions/%20northamerica/unitedstates/tennessee/success-in-treating-white-nose-syndrome.xml
http://www.nature.org/ourinitiatives/regions/%20northamerica/unitedstates/tennessee/success-in-treating-white-nose-syndrome.xml


abundance and diversity of external bat microbiota. Their study included 202 (62 cave-netted, 140 

surfacenetted) bat samples belonging to 13 species of bats from western US uninfected with WNS and the 

authors managed to identify differences in microbiota diversity among sites, and between cave bats versus 

surface-netted bats, regardless of sex and species. These results present novel information about the factors that 

shape external microbiota of bats providing new insights into potential vulnerability of different bat species to 

WNS. However, still most of the research is turned towards antagonistic bacteria species which can produce 

active substances inhibiting the fungus (AMELON & KNUDSEN 2010 – cit. acc. to FRITZE ET AL. 2012). 

Other decisions for active management of WNS include using artificial roosts that can be cleaned 

every year in order to exclude the possibility of bats getting infected with P. destructans from the environment. 

Such an experimental hibernacula was built in Tennessee and existing military bunkers have been used as 

artificial hibernaculum in the northeastern U.S.A., though it is still early to evaluate their effectiveness (FRICK 

ET AL. 2016). Some authors also suggest supplying hibernating bat with electrolytes, given that their depletion 

plays an important role in progression of the disease (FRICK ET AL. 2016). Breeding bats in captivity has also 

been discussed, but in general considered to be too difficult. However, captive colonies could be used at least to 

provide animals for laboratory experiment, thus reducing researchers' impact on wild populations (FRICK ET AL. 

2016).  

Important impications were provided by JOHNSON ET AL. (2014). They proved that host and 

environmental characteristics are significant predictors of WNS mortality and outlined environmental and 

quantitative pathogen characteristics which could be useful in further for pathogen prevention. The authors 

conducted a captive study of 147 little brown myotis (Myotis lucifugus) inoculated with 0, 500, 5 000, 50 000, 

or 500 000 Pd conidia and hibernated for five months at either 4 or 10 
o
C. The results obtained showed that 

female bats were significantly more likely to survive hibernation, as were bats hibernated at 4
 o

C, and bats with 

greater body condition at the start of hibernation. Although all bats inoculated in this study with P. destructans 

exhibited shorter torpor bouts compared to controls (a WNS characteristic) only the exposure to up to 500 

conidia was sufficient to cause a fatal infection. However, JOHNSON ET AL. (2014) pointed the need to quantify 

dynamics of pathogen exposure in free-ranging bats, as dynamics of WNS produced in captive studies 

inoculating bats with several hundred thousand conidia may differ from those in the wild. Generally similar are 

the results of GRIENEISEN ET AL. (2015) from another 2-year captive study of the same species, designed to 

determine the impact of hibernacula temperature and sex on WNS survivorship in Myotis lucifigus that 

displayed visible fungal infection when collected from affected hibernacula. They demonstrated that colder 

hibernacula were more favourable for survival, that WNS mortality varied among individuals and  that female 

bats might be more negatively affected by WNS than male bats.  

According to the findings summarized above and following ZHANG ET AL. (2014) it is possible to state 

that all results underscore the need for integrated disease control measures that target both bats and P. 

destructans  and  that urgent steps are still needed for the mitigation or control of the pathogen to save bats. 

Currently, many projects are concentrated on different aspects of fighting the disease and positive results are 

expected. However, before applying whatever strategies for decontamination of already infected sites or healing 



already diseased animals, it is of primary importance to eliminate the human factor in transmitting the pathogen. 

SHELLEY ET AL. (2013) tested various methods of disinfecting cave clothes and equipment. They discovered that 

washing in temperatures above 50ºC or placing in Lysol solution in concentration 1:64 are 100% effective 

against P. destructans and do not significantly decrease equipment quality. Regarding cave visits for scientific 

purpose, PUECHMAILLE ET AL. (2011B) pointed out that transport of samples could also be a cross-contamination 

source as P. destructans spores are able to germinate after being stored for 8 days in RNAlater or dry. On the 

other hand, 70% ethanol can kill the fungus after a minimum of 24 hours, while only 30 minutes are enough for 

absolute ethanol. That is why, when transporting pathogen samples for DNA research, the use of absolute 

ethanol is recommended, especially for places where P. destructans has not yet been observed.     

 

6. Studies on Pseudogymnoascus destructans in Bulgaria and future perspectives  

 

In Bulgaria P. destructans was observed on bats 

by B. Petrov and S. Stoycheva in 2011 and 2012 

(B. Petrov, pers. comm.), but was first first 

discovered microscopically in 2014 by the 

Bulgarian authors of these review (and D. 

Zlatanova) in environmental samples from the 

caves Lednitzata in Rodopi mountains and 

Raichova Dupka in Central Balkan National 

Park (TOSHKOVA 2014, ZHELYAZKOVA 2014; 

TOSHKOVA & ZHELYAZKOVA 2014.) and later 

its identity was confirmed by DNA analysis in 

Greifswald, Germany by S. PUECHMAILLE  

(TOSHKOVA & ZHELYAZKOVA 2014). A few 

months later the fungus was documented by 

DNA analysis  in the samples from the cave 

Ivanova Voda, also in Rodopi Mts 

(PUECHMAILLE, in litt.). The characteristic 

white fungal growth on the muzzle and the 

wings of the bats was observed on numerous 

occasions during the last winter monitoring of 

bat populations in the country (season 2014-

2015) – ZHELYAZKOVA & TOSHKOVA, unpubl. 

An interesting observation from this year is the  

 

 

Fig. 1. 

Fig. 2. 

Fig. 1. Colony of Psedogymnoascus destrutans on malt extract agar from the cave Raichova Dupka. 

Fig. 2. Conidiospores of of Psedogymnoascus destructans from the cave Raichova Dupka.  



 

late hibernation of Myotis myotis/blythii in the cave Golyamata Balabanova Peshtera in the Western Balkan Mts 

– in the beginning of June some male bats were still in torpor and all of them had the characteristic for P. 

destructans white growth on the muzzle, ears, and wings. This was observed for the first time in Bulgaria, 

although other authors have previously reported torpid bats in May and June throughout Europe (PUECHMAILLE 

ET AL. 2011A).  

As Bulgaria is one of the most important countries in Europe regarding bat numbers and species 

diversity, it is a suitable place for investigations on the biology of P. destructans in its native environment and 

its evolved interactions with its hosts that have led to the peaceful co-occurrence of bats and fungi. So far, 

multiple researches have concentrated on finding the exact processes accounting for the differences between the 

survival rates in European and American WND-positive bats, but still without any significant results. Pushing 

this matter further is of great importance for understanding the distribution mechanisms and evolution of 

wildlife diseases, especially when having in mind the ever increasing traffic of people and products between 

continents, which inevitably leads to transport of various microorganisms and increases the probability of 

introduction of new diseases in naïve ecosystems (CUNNINGHAM ET AL. 2003). Up to now, the WNS is 

devastating for North American bat populations but for the first time it made societies and governments fully 

aware of the indispensable role these animals play in the ecosystems. WND already greatly influenced 

conservation planning and population monitoring of temperate bats in North America (FOLEY ET AL. 2011) and 

mutual efforts of researchers all over the globe already led to some advances in various methods of limiting the 

mycosis distribution and even curing infected bats and it is possible that some of them soon will be applicable 

in a large scale. Although in Europe and Asia flying mammals are not directly threatened by WND, it is 

important to use the disease popularity to promote a responsible attitude towards caves and their inhabitants. At 

present, many cavers and speleologists do not even wash their equipment between visiting different 

underground sites, which is not a good strategy for their protection. In order to be effective in fighting the 

epidemic and to prevent similar cases in the future, a combination of high-tech lab science, regular field 

monitoring, and education should be used. 
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