
 1

MASTERING ADAPTIVE HYPERMEDIA COURSEWARE 
  

 

Dessislava Vassileva, Boyan Bontchev, Slavomir Grigorov 

Faculty of Mathematics and Informatics, Sofia University, 5, J. Baurchier blv., Sofia 1164, Bulgaria 

Tel./fax +359 2 971 35 43, bbontchev@fmi.uni-sofia.bg, http://www.fmi.uni-sofia.bg/ 

 

 

Abstract. One of the still open gaps in modern e-learning platforms is the lack of adaptation of 

learning process regarding well-structured learner models. The paper presents an adaptive model of 

hypermedia learning courseware and the processes of its construction and delivery. Next, it sketches 

the software architecture of an adaptive hypermedia system (AHS) being under development at Sofia 

University, Bulgaria. Unlike other AHS, the present one does support of adaptive navigation, 

presentation and content selection without defining complex rules for controlling narrative 

storyboards. There are discussed authoring and instructional design of hypermedia courseware for 

adaptive delivery, and the work process of the adaptive engine for delivering learning objects in a 

way adapted to a well-structured learner model. In order to illustrate our prototype, we provide UML 

use case diagrams of the authoring and instructor’s application and, as well, explanation of the 

workflow of the adaptation engine. 

 

  

Keywords: hypermedia, learning object, metadata, platform, authoring tools, adaptive systems 

 

 

 

 1.  INTRODUCTION  

 

In last fifteen years, authoring and delivery of adaptable e-

learning courseware appears to be very important for design 

of modern learning management platforms. During that 

period, there have been proposed a lot of works identifying 

the key challenges in adaptive Web based multimedia 

information delivery. The chief goal of personalised and 

adaptive e-learning was formulated by Wade in [1] as 

assuring of “e-learning content, activities and collaboration, 

adapted to the specific needs and influenced by specific 

preferences and context of the student, based on the sound 

pedagogic strategies”. In order to achieve that goal, 

Adaptive Hypermedia Systems (AHS) possess abilities for 

provisioning of various forms of adaptation, such as 

adaptive navigation, structural adaptation, adaptive 

presentation and historical adaptation [2]. Some research 

groups focus on adaptability to learners’ current knowledge 

based on the theory of knowledge spaces [3]. The use of 

learning objects provides an excellent opportunity for 

learners to apply their own meanings and context to 

available information [4]. Dynamic adaptation is used in 

different instructional scenarios with content package 

adaptation facilitated by wide usage of Web services [5]. 

Other researchers introduce additional level of system self 

adaptability based on the idea that different forms of learner 

model can be used to adapt content and links of hypermedia 

pages to given user [6]. The self adaptability is based on 

clean separation of the learner model from the content 

model and from the adaptation model, without narrative or 

pedagogical model to be embedded in the content or the 

adaptation engine. It supposes dynamic changes in 

adaptation process based on modification of the content 

parameters according input from learner passing hypermedia 

resources and assessment about their understanding. 

 

Until the present moment, there have been investigated 

several main techniques for adaptation [7], as follows: 

• Adaptive navigation – the system may manipulate 

hyperlinks in various ways, e.g. by hiding some of them, 

and sorting or annotation them;  

• Adaptive presentation – here, presentation of page 

content is adapted for each system user regarding his/her 

level of knowledge, performance, learning goals or some 

characters specific for given user;  

• Adaptive content selection – the system could show or 

hide content depending on specific user behaviour;  

• Adaptive problem resolution – by means this technique 

the system would be able to help given user in solving a 

difficulty or problem when executing a task, in a way 

adapted to the specific user model.  

 

It is obvious, that applying one or some of the techniques 

above will strongly depend on organisation and structuring 

both the models of system user (in particular – the learner) 

and the domain model known as AHAM reference model 

[8]. On other way, realisation of techniques normally is 

presented by the adaptation model (partially supported by 

the environment model). Thus, we focus in this research on 

several data models: 

• Learner (student) model – stores information about the 

final user – receiver of the e-learning content – such as 

personal data, preferences, goals, level of knowledge, 

performance shown during assessment, etc.;  

• Domain model – serves as a repository for structured 

content for given domain, as well as for its metadata;  

• Adaptation model – stores specific rules for adaptable 

content delivery based on usage of both the learner and 

the domain models; the rules are to be executed by the 

adaptation engine to assure e-learning really adapted to 

individual learners. On other way, the adaptation engine 

 

6th Int. Conference on 

Emerging e-learning 

Technologies  

and Applications 

The High Tatras, 

Slovakia 

September 11-13, 2008 



 2

may change some information within the learner and 

adaptation models, e.g. information how the assessment 

result will influence next content delivery.  

 

The next of the paper is structured as follows: part two 

explains in brief our triangular model for AHS, which 

extends the AHAM reference model in terms of refining 

each one of the three basic models explained over. Part 

three deals with the software architecture of an adaptive 

hypermedia system supporting our triangular model. Next, 

we go to construction and delivery of adapted e-learning 

content by revealing the use case semantics of the authoring 

tool and the instructor’s tool and by explaining the work 

flow of the adaptation engine. Finally, there are provided 

conclusion remarks and some of the directions of our future 

work. 

 

 

2.  A TRIANGULAR MODEL FOR AHS 

 

The AHS model described in details in [11] follows a 

metadata-driven approach, explicitly separating narrative 

storyboard from the content and adaptation engine (AE). 

Fig. 1 represents the triangular structure of our model which 

refines the AHAM reference model [8] by dividing in three 

each one of the learner’s (or, generally speaking – user’s), 

domain, and adaptation models. This is a new hierarchical 

organizational model for building adaptive hypermedia 

learning management system (LMS). At first level, the 

model is based on a precise separation between learner, 

content and adaptation model, while at second level each of 

these sub-model is divided into three others sub-models [9]. 

All the sub-models should be defined as XML schemas 

representing the characteristics of a learner that must be 

modelled and used for cross-session interoperability and 

consistency. The sub-models may consist of several 

concepts related or not related each other by some ontology 

links.  

 

 
 

Fig. 1. The triangular model structure 

 

 
 

Fig. 2. A sample conceptual learner model 

 

The main benefit of the proposed model is in assuring strong 

independence of any of the building models and, at the same 

time, in facilitating a flexible adaptation of content delivery. 

It can be supported by different system architectures not 

limiting application of various adaptation techniques, such 

as adaptive presentation, navigation support and content 

selection. In order to be able to describe polymorphic 

learner profiles, we define conceptual characters of given 

domain such as characteristics of the learning style, 

psychology characters, etc. Each of the conceptual 

characters describing the learner has a weight factor Wci 

(zero or any integer number, or percent between 0% or 

100% incl.) specifying the importance or the level of 

presence of that concept (character) inside the learner model 

as shown in fig. 2. Thus, a conceptual character having no 

importance or not being present receives zero weight.  

 

The learner model 

Unlike other approaches, in the learner model we separate 

goals and preferences from shown knowledge and 

performance, as the first sub-model is static while the 

second one is rather dynamic and takes a part in the event-

driven storyboard monitoring. The model of learning style 

(learner characters such as visual, auditory, kinaesthetic and 

others) is detached as another learner sub-model and can be 

used for choosing contents for given learning style. While 

the learning style can be determined in the very beginning of 

the learning explicitly by the learner or by appropriate pre-

tests, other tests should be exercised during the e-learning 

process in order to assess prior or gained knowledge and 

performance results of each individual student. 

 

The domain model 

The domain model is composed of content itself (granulized 

in learning objects (LOs) according to the SCORM 

standard) [10], LO’s metadata (LOM) and LO’s content 

assets (images, text, tables, etc.) forming a logical taxonomy 

for the knowledge domain built upon domain ontology 

during the course composition process by the course author. 

The content LOs are placed by the instructor on course 

pages, while pages represent nodes within course storyboard 

graph. Content pages delivery is controlled by the 

adaptation engine (AE) for choosing most appropriate 

content for presenting it to the user with given learning 

Storyboard  

Rules 

Narrative Storyboard 

Narrative  
Metadata 

Adaptation 
Engine 

Learning 
  Style 

Goals and 

Preferences 

Knowledge & 
Performance 

Content 

Content 

Groups 

Content 
Metadata 

Adaptation 

Model 

Learner 
   Model 

 Domain 
Model 



 3

model. Instead of choosing dynamically a page (i.e. node of 

the storyboard graph) with its content, we propose choice of 

best working path within the graph for specific learner with 

given learning style on one hand, and shown prior 

knowledge and performance on the other. For this purpose, 

we define storyboard Control Points (CPs) as nodes of the 

storyboard graph, where AE either measures learner 

knowledge/performance, or receives input about satisfaction 

level of learner’s goals and preferences. For the sample 

narrative storyboard graph presented in fig. 3, CPs are 

shown as black circles. The path from one control point to 

another is referred as Working Path (WP). Each working 

path may consist of one or more nodes (pages) each of  one 

specifying (by storyboard metadata) its LO or LOs. 

 

The adaptation model 

The adaptation model (AM) captures the semantics of the 

pedagogical strategy employed by a course and describes 

the selection logic and delivery of learning 

activities/concepts. AM includes a narrative storyboard sub-

model supporting course storyboard graphs, which may 

differ for different learning styles. It consists of control 

points (CP) and work paths (WP).  

 

Fig. 3 presents a sample narrative storyboard graph 

summarizing storyboard graphs for several different learning 

styles. CP’s are given in black circles, while other points 

(nodes) without any control functions are shown in white. 

With dotted hairlines there are presented all the four WP’s 

starting from CP1 and finishing in CP2. Some of them could 

be available for a given narrative storyboard for a specific 

model, some not. Moreover, AM should provide a schema 

of storyboard rules used for controlling the e-learning 

process. Storyboard rules determine sequencing of the 

course pages upon inputs from learner sub-models. The 

narrative metadata sub-model sets such rules for passing a 

CP (e.g., as threshold level of assessment performance at 

that CP) or for returning back to the previous CP. 

 

 

 
 

Fig. 3. Sample narrative storyboard graph 

 

The adaptation engine 

The core of our model is the adaptation engine (AE) which 

is responsible for generating the actual adaptation outcomes 

by manipulating link anchors or fragments of the pages’ 

content before sending the adapted pages to a browser. The 

AE uses an event-driven mechanism for controlling the 

storyboard execution based on the storyboard rules applied 

to the inputs from the learner model. AE selects the best 

storyboard WP within the graph by evaluating weight 

coefficient of the pages within the WP for the given learner 

style [11]. 

 

 

3.  SOFTWARE ARCHITECTURE OF ADAPTIVE 

HYPERMEDIA SYSTEM 

 

The software architecture of the adaptive hypermedia 

system being under development is component based. Fig. 

4 shows a general view of the system by representing a 

UML deployment diagram. There are four application 

clients – one of each of the actors (author, instructor, 

learner and administrator). The server side components of 

the author and instructor clients are respectively an 

authoring tool and storyboard graph and page composers. 

All of them use a common business API. Learning content 

is structured by means of usage of XML schema/DTD for 

LOs and metadata and is stores within a content database, 

while storyboards and learner models are saved in separate 

databases. The adaptation engine takes central part in the 

system and communicates to the business API and to the 

administrator and the learner applications. Next part of the 

article explains its role and how it assures adaptation of 

content delivery by means of using the pages and rules 

mastered with both the authoring and instructor tools. 

 

 
 

Fig. 4. General view of the system architecture 

 
 

 

 

 
WP2 

WP1 

WP3 

 CP1  CP2 

 

 P1 P5 

P6 

P2 

P4 P3 
P7 



 4

4.  CONSTRUCTION OF HYPERMEDIA 

COURSEWARE FOR ADAPTIVE DELIVERY 

 

The authoring tool 

Our authoring tool (fig. 5) makes a part of the ARCADE 

(Architecture for Reusable Courseware Authoring and 

Delivery) e-learning platform [12] but can be used as a 

separate application. We have integrated its extended 

version into our system. In this version (fig. 5), the learning 

content is presented by learning objects (LOs) connected 

each other within an ontology tree. Each of LOs is described 

with its metadata accordingly IEEE Learning Object 

Metadata (LOM). LOM provides more effective search for 

LOs, reuse of learning content and possibilities 

interoperability with other authoring tools, environments or 

repositories. We use XML format for creating LOs, which 

facilitates usage of web services for learner data exchange 

and portability towards various platforms. There are 

supported two kind of LOs – for learning content and for 

assessment materials. For each LOs the author may define 

several test questions (being presented as LOs, as well).  

Then the instructor may use them for test generation and 

learner knowledge examination. The test questions have 

different status and user interface from the learning content. 

A LO may have a hierarchical structure - it may contain 

several assets - images, texts, multimedia files, external 

resources, or links and other LOs. LOs representing test 

questions have to contain as well their answers. Our 

authoring tool supports three questions type – multi-choice, 

single choice and Boolean. The LO content is constructed 

accordingly the Sharable Content Object Reference Model 

(SCORM) standards and specifications for packaging of 

web-based e-learning content.  

 

 
 

Fig. 5. View of the authoring tool view – creation of  LO 

 

As shown in fig. 4, the content authoring application 

communicates with several other components. Fig. 6 

presents main use case diagram of the authoring tool. When 

the author is logged in, he/she could create, update, delete 

and read LOs and its internal elements. The author could as 

well set type of test question and add, delete, and edit 

answers to it. The author has to fill LOM information for 

each LO. More, he/she can edit ontology three by moving, 

adding new or removing LO.  

 

The adaptation engine reads the narrative storyboard graph 

(created by the instructor) and content pages containing 

LOs. After then it transforms learning content depending on 

learner profile and LO type (test or content) to HTML 

format and delivers this personalised content to the student. 

If the page is a control point (i.e., assessment page), the 

adaptation engine generates automatically a test 

(parameterized by the instructor) according to LOs 

contained within the working path finishing with this control 

point.  

 

The instructor (by using the instructor application) may 

browse LO ontology, read LOs and, finally, compose pages 

with learning content. Moreover, he/she could copy or drag-

and-drop branch of the ontology three or only a single LO. 

 

 
 

Fig. 6. Author use case diagram 

 

The instructor tool 

The instructor tool is an application for creating courses 

adaptable to different users. Instructor composes a course in 

terms of interconnected pages represented as nodes of the 

narrative storyboard and connected each other. The 

narrative storyboard graph is to be processed by the 

adaptation engine (AE) in order to choose the best path for a 

particular user. Pages are easily modified by drag and drop 

of available learning objects. Fig. 7 shows instructors drag 

action from learning objects browser where they are 

organized in an ontology tree as defined by the author. In 

the course graph, there is one terminal vertex that represents 

control point (CP), i.e. course exam. A course exam is 

generated automatically based on the learning objects used 

in pages on the work path leading to that CP, and questions 

related to these LO (as far as they are designed by the course 



 5

author and linked to correspondent LO within the ontology 

tree). Thus, it is not up to the instructor to determine every 

single question. To tune the course feedback he/she can 

adjust CP thresholds values, i.e. assessment results for 

passed exam.  

 

Instructor has also the responsibility to annotate page links 

and to set page weight parameters for each of the 

characteristics of the learner model (i.e., parameters 

showing how much given page with LOs is suitable for 

given learner character). These page parameters are very 

important for tuning the system. Adaptation engine use them 

to decide whether given page would be useful for particular 

user or not. If a page has high value of the parameter for 

given learner character and this character is dominant for a 

particular learner, then this page should be principally 

shown to that particular learner. Thus, if a work path (from 

the current control point to the next one) contains many 

pages suitable for particular user while other path do not, 

than this work path will be nominated for the best path for 

such a user. Links annotation labels can be added also by 

instructor to influent user’s decision when a particular user 

is choosing among several links. 

 

 
 

Fig. 7. View of the instructor application 

 

The next figure (fig. 8) represents use case diagram for the 

instructor tool. The main actors for this module are the 

instructor and adaptation engine. The instructor uses a web 

based client application (developed in Adobe FLEX 3, as 

rich internet application) to login and then to perform all the 

tasks (the server-side of the application is developed in 

Java). That includes creating courses, creating pages, filling 

pages with learning objects, interconnecting pages, adjusting 

learning objects characteristics, setting link annotations, 

adjusting exam thresholds, checking user feedback. 

Adaptive engine uses business API (machine to machine 

interface) to read course’s graph and learning objects 

characteristics. Then it performs its calculations of the best 

path for particular user.  

 

The adaptation engine 

The adaptation engine (AE) is responsible for performing all 

necessary adaptation mechanism for content delivery to a 

specific learner. This includes content selection, content 

hiding, link annotation, link hiding, etc. Fig. 9 represents the 

activity diagram of the AE. When learner starts a new 

course, adaptive engine finds the best path for him in the 

course graph. The best path is that one with the highest 

weighed score. For a particular user, the best path is 

calculated by a sum of multiplications between page 

parameters values and weights of their correspondent 

learner’s characters. This path is stored for learner as current 

work path. When learner asks for the next page, adaptive 

engine may hide objects that are not important for this user. 

It may also select proper link annotations.  

 

 
 

Fig. 8. Instructor use case diagram 

 

 
 

Fig. 9. Adaptation engine activity diagram 

 

As many users are passing through the courses, adaptive 

engine has to remember user tracks. If a user abandons the 



 6

work path determined by AE (by clicking on a link leading 

to another page outside of the path), the AE continues 

tracking pages the user has passed through giving the user 

ability to return back to the path by adding the link “Return 

to the WP” to each of the pages. As well, AE may store 

some statistics of learner feedbacks to determine which 

pages are useful for which kind of users. This gives the 

adaptation engine ability to learn from their skills and 

perform better estimations for paths for further learners.  

 

 

 

5.  CONCLUSIONS 

 

Adaptive e-learning platforms tend to open one of the most 

promising research areas in next several years. The article 

presented the conceptual model of an adaptive hypermedia 

system and, based on this model, the software architecture 

of a platform for content authoring and delivery. It 

explained how authors and instructors can master adaptive 

content and how the adaptation itself is controlled via 

special engine. Though the project is still under 

development, we started planning directions for further 

elaboration of the software platform prototype. One of the 

issues for future improvement is improvement of the 

adaptation engine. For better decision making process, its 

algorithm can be replaced by another one using artificial 

intelligence and neural networks.  

 

Another improvement can be done in learner application. 

Accurate information about user can lead to better paths and 

less noise in feedback statistics. The learner application 

could monitor user interactions as mouse movement, 

keyboard stroke, and learn more about his preferences and 

his learning style. The authoring module can also be 

improved in terms of extended cross-platform 

interoperability. We plan to develop tools for import and 

export of single LOs and ontology branches or threes from 

external resources as learning repositories or platforms. In 

this way, authors would have more and more versatile 

learning content. 

 

 

6.  REFERENCES 

 

[1] Dagger, D., Wade, V., Conlan, O.: Personalisation for 

All: Making Adaptive Course Composition Easy. 

Special issue of the Educational Technology and Society 

journal, IEEE IFETS, 2005. 

[2] De Bra, P., Brusilovsky, P., Conejo, R.: Adaptive 

Hypermedia and Adaptive Web-Based Systems. New 

York: Springer-Verlag, 2002. 

[3] Kayama, M., Okamoto, T.: A Knowledge based 

Navigation System with a Semantic Map Approach for 

Exploratory Learning in Hyperspace. Proc. of Int. Conf. 

ISSEI'2000, 14 - 18 August, 2000. 

[4] Conlan, O., Dagger, D., Wade, V.: Towards a Standards-

based Approach to e-Learning Personalization using 

Reusable Learning Objects. Proc. of World Conf. on E-

Learning, 2002, pp. 210-217. 

[5] Leune, K., W.J. van den Heuvel, Papazoglou M.P.: 

Exploring a Multi-Faceted Framework for SOC: How to 

develop secure web-service interactions? Proc. of the 

14
th
 Int. Workshop on RIDE, USA, 2004, pp. 485-501. 

[6] Díaz, P., Sicilia, M.A. and Aedo, I.: Evaluation of 

Hypermedia Educational Systems: Criteria and 

Imperfect Measures. Proc. of the Int. Conf. on 

Computers in Education, USA, 2002, pp. 621-626. 

[7] Brusilovsky, P.: Adaptive Hypermedia. User Modeling 

and User Adapted Interaction. Ten Year Anniversary 

Issue, Alfred Kobsa, ed., 2001, pp. 87-110. 

[8] De Bra P., Houben G.-J., Wu H.: AHAM: A Dexter-

based Reference Model of Adaptive Hypermedia. 

Proceedings of the tenth ACM Conf. on Hypertext and 

hypermedia, ISBN:1-58113-064-3, pp. 147-156. 

[9] Vassileva D., B. Bontchev.: Modelling reusable adaptive 

hypermedia for e-learning platforms, Proc. of IADATe-

2004, Bilbao, Spain, July 7-9, 2004, pp. 225-229. 

[10]Rey-López, M.,Fernández-Vilas A.,Díaz-Redondo R., 

Pazos-Arias J.: Providing SCORM with adaptivity. 

Proceedings of the 15th international conference on 

World Wide Web, ISBN:1-59593-323-9, pp.981-982. 

[11]Vassileva D., Bontchev B.: Self adaptive hypermedia 

navigation based on learner model characters, Proc. of 

IADAT-e2006, Barcelona, Spain, July 12-14, 2006, 

pp.46-52. 

[12]Bontchev B., Vassileva D.: Internet Authoring Tool for 

E-learning Courseware, Proc. of the 7th WSEAS Int. 

Conf. on Computers. Corfu, Greece, pp. 305-311  

 

 

THE AUTHORS 

 

Dessislava Dakova Vassileva: obtained 

MSc degree in Mathematics (2002) at Sofia 

University, Faculty of Mathematics and 

Informatics. Software developer and 

consultant. Since 2005 is Ph.D. student in 

Computer Science at Sofia University, 

Department of Software Engineering. 

 

 

Boyan Paskalev Bontchev: obtained MSc 

degree in Computer Science (1988) at TU-

Sofia and PhD degree at Bulgarian 

Academy of Sciences (1993). Dr. Bontchev 

followed a career of software engineer and 

consultant in Portugal, Spain, Italy and 

Bulgaria, and since 2004 is Associate 

Professor at Dep. of Software Engineering at Sofia 

University. Author of more than 50 scientific publications. 

 

 

Slavomir Vladimirov Grigorov:  

Graduated with bachelor degree at 

Technical University of Sofia, Faculty of 

Computer System and Control. At the 

moment finishes his MSc degree in Sofia 

University “St. Kl. Ohridski”, Faculty of 

Mathematics and Informatics. Professional 

Java developer 


