
Improving the Elasticity of Services
with a P2P Infrastructure

Weidong Han and Ralph Deters

Department of Computer Science
University of Saskatchewan

Canada
{weh195, deters}@cs.usask.ca

Abstract. Web Services (WS) are one of the most popular approaches
for building distributed systems due to their widespread acceptance
within industry and academia, established and open standards, a wealth
of development tools/infrastructures (e.g. Apache Axis [1]), and maybe
most importantly the number of successful deployments. A key issue in
the deployment of WS is the elasticity of services e.g. their ability to
respond to changes in the demand by dynamically adding or removing
WS provider nodes. This paper presents a novel P2P based management
approach for WS providers, that allows organizations to dynamically
add or remove replicated providers at runtime and thus increases their
elasticity. Unlike the current centralized approaches, this scalable P2P
approach allows for a fully distributed and fault-tolerant management of
replicated provider and thus enables organizations to respond faster to
changes in WS consumer behavior.

Keywords: SOA, Web Services, P2P, Gnutella, Elasticity.

1 Services & SOA

Within the context of service-oriented systems, services are computational
elements that expose functionality in a platform-independent manner and can be
described, published, discovered, orchestrated and consumed across language/
platform/organizational borders. Compared to other middleware, such as RPC
(e.g. ONC-RPC) and object-oriented middleware (e.g. CORBA), service-
orientation [2] differs in its lack of access and location transparency, since there
is a very clear notion between local and remote. However, other transparencies
namely migration, replication, concurrency, scalability, performance and failure
transparencies can be supported in service-oriented middleware. Compared to
objects, services are more autonomous, e.g. the can refuse invocation requests.
And unlike objects that tend to be described in terms of data structures and
methods, services are described by contracts and schemas and they tend to rely
on policies to govern their behavior.

The idea of using services as the building block was popularized by the
introduction of the Service-Oriented Architecture (SOA) [3] in 1996. Schulte and
Natis [4] developed this architecture as a means to solve many of the enterprise
integration and development challenges. In this classical SOA approach, three
types of participants were identified, namely the service consumer, the service
provider and a registry (e.g. UDDI Server). Service providers register their

 Improving the Elasticity of Services with a P2P Infrastructure 219

services with the registry which in turn is used by the consumers to locate
services. The service registry acts as a service broker, which provides a public
listing of registries which is exposed via a public API. SOA was designed to
be a language and platform independent architecture and can consequently be
implemented in a variety of ways (e.g. using CORBA).

SOAP based Web Services (WS) have emerged as the de facto standard for
implementing SOA due to the well accepted and standardized WS* protocol
stack. Three protocols form the core of WS* namely Simple Object Access
Protocol (SOAP) [5], Web Service Definition Language (WSDL) [5] and
Business Process Execution Language (BPEL) [6]. Not surprisingly these
three core WS* protocols are now supported by all virtually all mainstream
programming languages allowing developers to easily expose application
interfaces and/or consume existing services.

Fig. 1. Classical SOA Fig. 2. SOA with ESB

However, as the development of providers and consumers was with the help
of frameworks and IDEs simplified, it became apparent that the classical service-
oriented architecture was to open for most businesses. Allowing consumers
to discover the location and functionality of the physical providers and was
seen as too risky. Therefore the classical architecture that provides consumers
with direct access to the registry and allows them to directly engage providers
was changed into an architecture that allows the organization/enterprise that
owns the providers to control all aspects of discovery and service invocation.
To provide an organization/enterprise with better control, SOA vendors offer
an Enterprise Service Bus (ESB) that controls the visibility of providers to
external consumers, prevents direct consumer provider interaction and also
enables fine grained control on when/how external consumers engage providers.
The ESB acts like a proxy between consumers and providers controlling all
communication between consumers and providers. Modern ESBs offer request/
response routing, mediation (e.g. service mapping, protocol transformation),
orchestration (execution of workflows) and maybe most importantly, fine
grained management thus allowing it to control who and how its providers are
engaged.

Being able to control all aspects of how consumers discover and engage
service providers has allowed businesses to create virtual service providers
and to define how they are mapped to physical ones. By mapping one virtual
provider to a set of replicated ones, it becomes possible to increase the capacity
and fault-tolerance of services. If however customization is important (e.g.
quality of service, QoS), the requests for the virtual providers are intercepted

220 W. Han and R. Deters

by the ESB, augmented and then re-routed to the physical one. By providing
different augmentations and transformations of the consumer requests, it
becomes possible to create different behaviors thus achieving customization.

2 Provider Overloads

An important aspect of using the WS* protocol stack is that the communication
protocol SOAP uses XML messages, e.g. consumers and providers exchange
XML documents over HTTP. Consumers invoke a service of a provider by
using the HTTP POST command for the transmission of their SOAP request
message. The providers respond to this POST command with a HTTP response
that contains a SOAP response message. Since SOAP messages are XML
documents, they tend to require more memory and processor resources to create
and parse than other message formats.

Fig. 3. Provider experiencing light Overload.

An example of this effect can be seen in figure 4, which show the inter-
departure times of a slightly overloaded web service provider implemented in
Java 6 (using the standard javax.jws packages). The service provider receives
1000 tasks at an arrival rate of 1.7 seconds/task. Since each task requires 100
% CPU for ca. 1.9 seconds the server experiences right away a slight overload.
While it is expected that in an overload situations the departure times/rates
fluctuate, it is interesting to note that the variance of the departure rates increases
over time. Repeating the experiment with longer bursts shows that over time
an increasingly chaotic behavior emerges and that if the bursts continue for
too long the provider crashes due to memory errors. The main reasons for this
chaotic behavior are the creation of too many threads (one for each request) and
the XML parsing that result in the creation of many temporary objects.

Organizations therefore tend to avoid provider overloads and try to keep the
utilization of their providers below 70 %. One of the most effective methods for
preventing overloads within service-oriented systems is the use of an admission
control. Since the ESB is already the main mechanism to control access to the
providers it is the natural location to host an admission control. In its simplest
form, the admission system is a queue. Incoming messages are always added
to the queue and only if a provider is underutilized, a request is de-queued
and sent to the provider. In case the provider is already fully utilized (e.g.

 Improving the Elasticity of Services with a P2P Infrastructure 221

above 70% utilization), the request has to remain in the queue till a provider
becomes available. Using an admission control also allows for the introduction
of different levels of service. By moving from a simple to a priority queue and
determining the priority of the request based on the sender it becomes possible
to ensure that some customers receive better services by simply serving their
requests sooner. Obviously, any organization that exposes its services will try to
ensure a high availability and reliability of its services to stay competitive. This
is achieved by replicating service providers. However, determining how many
redundant providers should be used is very difficult when the usage of services
is fluctuating. Since an idle X86 blade server consumes on average 65 % of
the energy it would need during full utilization, it is important to avoid idle or
severely underutilized machines - especially in light of growing environmental
concerns and rising energy prices for cooling servers.

It becomes therefore important to dynamically add or remove physical
providers in an effort to ensure optimal resource usage while meeting customer
demands. The ability to dynamically scale up or down is referred to as elasticity.
The more elastic a service is, the faster it can be scaled up/down. In organization/
enterprises that main their own physical machines, the elasticity of services is
limited by the number of available machines. However, as cloud computing
became more popular, organizations/enterprises were able to dramatically
increase their capability by dynamically purchasing capacity from vendors like
Amazon EC2 for peak demands.

3 Dynamic adding and removing providers

A key issue in the dynamic adding and removing of service providers is to
ensure no interruption of service and a minimal overhead. As long as the
changes are small and infrequent, a centralized solution e.g. use of the ESB is
desirable. However, as the number of replicated providers is increased and the
changes become more frequent a decentralized approach is needed to avoid a
bottleneck and single point of failure. Consequently it is necessary to distribute
the management of the redundant service providers. One fairly well tested
mechanism for dealing with redundant and highly dynamic resources is a P2P
network e.g. a Gnutella network.

Fig. 4. Gnutella Peers.

222 W. Han and R. Deters

A P2P network using the Gnutella protocol (0.4) consists only of peers that
all provide common services and differ only in the resources they own. The peer
providing a resource to others is the provider peer, while the peer consuming
the resource is the consumer peer. All peers in a P2P network are organized
by themselves using a specific protocol, by which they can publish and find
resources in a cooperative pattern. Since P2P performs dynamic discovery
to filter out unavailable resources, it is very robust in a dynamic networking
environment. One of the most well studied and widely applied P2P protocols is
Gnutella. Each Gnutella peer has four basic operations, Ping, Pong, Query, and
QHit. Ping and Pong are used to find existing peers in the network, and Query
and QHit are used to find desirable resources. A Gnutella peer should propagate
an incoming request (Ping, Query) to those peers that it has direct connections
with (those peers are usually called as its neighbors), and send back the response
(Pong, QHit) to the peer issuing the request. Based on Figure 5, the working
mechanism of Gnutella can be explained in the following four steps.

If Peer 1 wants to join a P2P network, it will first connect to a known 1.
peer, e.g., Peer 2 in Figure 5.
After a connection to Peer 2 is established, Peer 1 will send a Ping request 2.
to Peer 2 to find other peers. Peer 2 responds with a Pong message to
Peer 1. The Ping request is also propagated to Peer 2’s neighbors (e.g.,
Peer 3, 4, 5). All neighbors respond the Ping and send Pong messages
back to Peer 1 through Peer 2. At this stage, Peer 1 knows Peer 2 – Peer
5 and vice versa.
Since a Gnutella peer always keeps a certain number of active 3.
connections (usually ≥ 5) to other peers, Peer 1 will try to establish more
connections. For instance, Peer 1 may connect to Peer 3.
Peer 1 sends Peer 2 a Query request to find a desirable resource. In 4.
addition, Peer 2 propagates the Query request to its neighbors. If a peer
has the requested resource, it sends a QHit message back to Peer 1 along
the incoming path. In this way, Peer 1 knows all peers owning the
requested resource. How Peer 1 accesses the resource of other peers
depends on different implementations. For most systems, exchanging
resources will use a dedicated connection instead of the one transferring
requests.

The Ping-Pong mechanism of Gnutella keeps detecting any change in the
peer while the Query-QHit mechanism ensures dynamic lookups.

4 Integrating the Gnutella protocol into the WS* Protocol stack

In Web Services, the SOAP message is the base of the inter-application
communication. Its textual format provides an opportunity to manipulate
the communication by using a proxy that intercepts SOAP messages passing
through it. Figure 5 shows the concept of using a transparent proxy between
a WS consumer and a WS provider, in which the proxy plays two roles. From
the perspective of the consumer, the proxy is the service provider. From the
perspective of the provider, the proxy is the consumer. Since the consumer sends
the request to and receives the response from the proxy, the proxy can fully

 Improving the Elasticity of Services with a P2P Infrastructure 223

control the communication between the consumer and the provider. In Figure
5, the proxy can “select” a service provider dynamically without notifying the
consumer.

Fig. 5. Using a Proxy to manipulate communication.

The P2P Web Services Framework (PWSF), that seamlessly integrates P2P
protocols into the WS* protocol stack, is based on such transparent proxies that
intercept the SOAP message.

Fig. 6. P2P Web Services Framework (PWSF).

Figure 6 shows a scenario, in which PWSF plays the role of the P2P peer
besides the WS provider and the WS consumer. When interacting with the P2P
network, a PWSF node appears as a P2P peer and manages to build and maintain
the P2P network with other PWSF nodes cooperatively. Therefore, PWSF is
more like a gateway joining two networks together. PWSF supports the Plug-in
technology, by which a developer builds a software module complying with the
plug-in interface and can easily plug the module into the framework to support
additional functions. Each PWSF node consists of three layers, the proxy
layer, the control layer, and the networking layer. Adjoining layers exchange
information via two unidirectional message queues. Each layer consists of
two isolated functional components: the framework component and the plug-
in. The plug-in contains the specific logical functionality that determines how
each layer should behave in a given situation. It is invoked by the framework
component when a message arrives or a predefined timer is expired. Then,
the plug-in performs consequent actions via the interface provided by the
framework component.

5 Evaluation
To evaluate the PWSF performance and scalability a small scale reference
system was developed to obtain precise measurements. The reference system
consisted of 8 relatively weak PCs (600 Mhz Pentium III, 512MB) that were
linked via a dedicated 100Mb Ethernet.

As shown in figure 7 the PWSF nodes perform well until the load increases
to ca 20 requests/second. At 30 requests/second they show an added one second
latency and two seconds at 50 requests/second. Tests with other PCs show that
increased bandwidth and more powerful computing resources allow the delay of
the sudden rise in latency e.g. stable response time till ca. 100 requests/second.
However letting the ESB distribute the requests (round robin scheduling)
over multiple nodes tends to be the most effective way for preventing node
overloads.

224 W. Han and R. Deters

Fig. 7. Response Time.

Using the measurements of the small scale network a simulator was
developed. As shown in figure 7 the simulated system tends to behave similar to
the reference system. Using the simulator larger networks with 200, 2000 and
10000 PWSF nodes were simulated. The results confirmed the general behavior
of Gnutella networks e.g. below 200 nodes (4 connections each) a very good
performance and low network overhead can be achieved. (ca. 500 ms). At 1000
nodes 6 seconds delay (average) were observed and above 2000 nodes over
10 seconds latency emerges. Adding and removing (idle) providers at runtime
doesn’t impact the system in any measurable way as long at the network wasn’t
split into subnets and the PWSF.

6 Conclusion

Dealing with fluctuating consumer demands requires services to scale up
and down depending on the current demand. To achieve such elasticity an
organization/enterprise must be able to dynamically add/remove hosts at
runtime. While small numbers of hosts can be managed by an ESB, larger
numbers require a robust and decentralized approach. P2P protocols like
Gnutella are particularly well suited for such a task due to their simple protocol,
resilience and good performance. Using transparent proxies as a means to
connect WS consumers and providers is an easy and reliable approach. Tests
with a reference system and later a simulator showed that the management of
up to 200 providers added only a 200ms delay per request.

While the current implementation (PWSF) has shown to be a very robust
tool our current focus is on the deployment of other P2P protocols and the use
of the programming language ERLANG for the P2P infrastructure.

Acknowledgments. This research has been funded by NSERC and TRlabs.

 Improving the Elasticity of Services with a P2P Infrastructure 225

References

Axis v 1.4, http://ws.apache.org/axis/, The Apache Software Foundation.1.
Don Box, “Four Tenets of Service Orientation“,[Online]. Available: http://msdn.2.
microsoft.com/msdnmag/isues/ 04/ 01/Indigo/default.aspx
Chatarji, J. “Introduction to Service Oriented Architecture (SOA)” [Online]. 3.
Available: http://www.devshed.com/c /a/Web- Services/Introduction-to-Service-
Oriented-Architecture-SOA, 5 pages. 2004.4.
Roy W. Schulte and Yefim V. Natis Service Oriented Architecture, Gartner Reports 4.
(SPA-00-7425, SPA-00-7426) 12 April 1996.
http://www.w3.org/2002/ws/5.
Business process execution language BPEL v.1.1, Microsoft, BEA, IBM. [Online]. 6.
Available: http://www-128.ibm.com/ developerworks/ library/ specification/ws-
bpel/
Chappell, D.: Enterprise Service Bus. O’Reilly Media, Inc.,Sebastopol (2004)8. 7.
Dyachuk, D., Deters, D. “Exposing workflows to load bursts”, ICEIS, 2007: 218-
225
Gnutella protocol specification v4.0 - http://www9.limewire.com/developer/8.
gnutella_protocol_0.4.pdf

