
Semantic Web-based Software Product Line
for Building Intelligent Tutoring Systems

Alan Pedro da Silva1, Evandro de Barros Costa2, Ig Ibert Bittencourt3,
Patrick H. S. Brito4, Olavo Holanda5, and Diego Demerval6

1, 2, 3, 4, 5, 6 GrOW - Group of Optimization of the Web
www.grow.ic.ufal.br

1 Federal Institute of Education, Science and Technology
Palmeira dos ´Indios - Alagoas - Brazil

alan.silva@ifal.edu.br
2, 3, 4, 5, 6 Federal University of Alagoas

{evandro, ig.ibert, patrick, olavoholanda, diego}@ic.ifal.br

Abstract. Intelligent Tutoring Systems (ITS) have been assumed as an
important learning resource to be added as a module in e-learning systems.
However, the construction of such systems is still a hard and complex
task that involves, for instance, representation and manipulation of
different knowledge source. To alleviate these issues, this paper proposes
a new approach for building ITS by integrating Software Product Line
and Semantic Web technologies focusing on two software engineering
aspects: large-scale production and customization for different learners,
and how to allow these knowledge to be automatically shared between
software and authors in both reuse and knowledge evolution points of
view. This paper shows a modeling for the proposed product line, as well
as how the Semantic Web technologies was used to achieve the effective
shared knowledge.

1 Introduction

Intelligent Tutoring Systems (ITS) are a kind of complex software system that
can be used in an efficient way to improve the student learning process [1,11].
Such systems are provided with mechanisms that enable, in an automated fash-
ion, a better understanding of the students’ needs, responding them individu-
ally. Moreover, ITS allow student centered learning despite the teacher centered
learning, thus allowing the student to control his/her own learning process. In
addition, ITS have been assumed as an important learning resource to be added
as a module in e-learning systems.

However, the process of constructing Intelligent Tutoring Systems (ITS) is
still a time-consuming, hard and complex task, and often requires a high cost
of production. For instance, in order to obtain one hour of tutoring, about 200-
300 hours of development must be spent [1]. This happens, especially, because
an ITS has embedded Artificial Intelligence techniques. First, the complexity
appears through the fact of many of these techniques can be used to represent
the knowledge to be taught (Domain Model), to represent the knowledge of a
student (Student Model), to reproduce the strategies of conventional teaching
from a teacher, to implement new pedagogical strategies (Teaching Model), to

128	 A. Silva, E. Costa, I. I. Bittencourt, P. H. S. Brito, O. Holanda, and D. Demerval

follow the learning and affective aspects (Diagnosis Process), and to motivate
the student and enable an adequate interaction between the system and the stu-
dent. Therefore, the project of an ITS demands a previous and very accurate
study of how the techniques will be used, as the same Artificial Intelligence
technique can be used for more than one purpose in an ITS as well as specific
functionality can be implemented through integrating more than one AI tech-
nique. For instance, a mechanism for evaluating the knowledge of a student can
be implemented through the integration of bayesian networks and rule-based
reasoning, where each technique can offer different and complementary infor-
mation about the student.

Actually, beyond the natural problematics of building a particular ITS, there
are further limitations to increase even more the development process of such
systems, especially if compared to traditional software [15,17,8,4]. The first
problem is that every ITS is built independently, which makes any attempt of
reusing any part of the system, especially the core components (Student Model,
Domain Model, Diagnosis Process and Teaching Model) completely inviable.
Another problem is the high maintenance cost due to the use of academics to
develop such systems, by other means, using a development team which is not
necessarily concerned about aspects of evolution and expansion.

To alleviate the mentioned issues, this paper proposes a new approach for
building ITS by integrating Software Product Line and Semantic Web technolo-
gies focusing on two software engineering aspects: large-scale production and
customization for different learners, and how to allow these knowledge to be
automatically shared between software and authors in both reuse and know-
ledge evolution points of view.

According to [5], a Software Product Line (SPL) is a set of software-in-
tensive systems sharing a common, managed set of features that satisfy the
specific needs of a particular market segment or mission and that are developed
from a common set of core assets in a prescribed way. Based on this definition,
SPL offers good conditions for its applicability on the particular context of
Intelligent Tutoring Systems because various tutors, in different domains, have
common and variable features (functionalities) [6], which allow the creation of
an unified platform for tutoring systems that can be adapted according to the
individual needs of each author. Moreover, when it comes to software reuse,
Software Product Line is one of the most sophisticated concepts in software
engineering, which is focused on small-grained, opportunistic and technology-
driven software reuse [13]. The strategic reuse provided by SPL combines the
business strategies of the market segment (ITS in this work) with the technical
strategies of reuse.

Therefore, SPL is an adequate approach for providing software reuse. How-
ever, traditional product line approaches do not address questions regarding
knowledge reuse and knowledge sharing or evolution. It means an important
lack in terms of ITS development and lifecycle. In this sense, the role of the
knowledge engineer becomes very important because the correct implementa-
tion of an ITS is linked to how well the knowledge is specified. In addition, an
ITS deal with knowledge of various types, making necessary the existence of a
broad knowledge about the relationship between them, so they can be joint with
the purpose of providing learning. Thus, in the process of building an ITS, it is
necessary to first express the knowledge, then perform the implementation. This
approach becomes inefficient in systems such as Intelligent Tutoring Systems,

Semantic Web-Based Software Product Line for Building Intelligent Tutoring Systems 129

since the number of knowledge domains an ITS can work is great.
This paper proposes a Product Line approach based on Semantic Web tech-

nologies. This is important for the ITS software layer to interoperate with the
knowledge one. Thus, the software layer can be built and evolved independently
on how the knowledge layer is constructed and evolved. So from this perspec-
tive, the Product Lines approach based on Semantic Services indeed produces
some progress [16]. By adopting this approach one can obtain a high level of
automation in the process of building applications in Product Lines. However,
they do not address interoperability between knowledge and software. Thus the
proposition of an approach based on Semantic Web technologies assumes the
use of intelligent agents in the whole process of searching and sharing informa-
tion. The agents are important in order to have better software adaptation and
re-adaptation with knowledge being considered in various contexts [18][14].

Therefore, this approach enables an automated and dynamic evolution of the
applications offered by a Software Product Line. Then, our proposal is to ex-
tend this approach to a Semantic Web technologies context in order to provide
semantic annotation of all available resources in the context of an ITS, as well
as the relationships between them, no matter how they were created.

Thus, in Section 1 a study of related work is described. In Section 2 the
proposed architecture of the product line is presented. In Section 3 the artifacts
to which the composition and evolution of ITS are performed in an automated
way are semantically described.

2 Related Work

Nowadays, there are two approaches which are used for building Intelligent
Tutoring Systems: Shell-Based Tolls and Frameworks. Both are not adequate
to address the issues focused on this work.

Shell-based tools are developed to provide a mechanism for building ITS
independently on the previous knowledge of advanced computing science con-
cepts. This provides the authors with a building mechanism containing several
built-in concepts and tolls. This way, the author is demanded to know how
the pedagogical strategies work, as well as the representation of the main ITS
components: domain model and student model. That means the author needs to
understand how each component work, so that each component can be properly
configured. This approach is inefficient from the reuse point of view: each ITS
has its own configuration in such a fashion their educational components are
also related in a specific way. This fact compromises reuse, maintenance and
evolution. The direct components reuse is impracticable given that each essen-
tial component has a particular configuration for each application instance. The
maintenance is also a complex task because a change in any component implies
changes in all components, hence, there are configuration and reconfiguration
needs in the whole system. The evolution is one aspect that was not correctly
dealed [1][2][12][3].

Frameworks are tools that have better reuse and adaptation power. It is an in-
trinsic characteristic in such projects and this implies that the author can reuse
components in several applications. However, its necessary that: (i) The tutor au-
thor knows how to use the framework components as well as its behaves, for that
system schedule is attached in the frameworks and (ii) what are the consequences

130	 A. Silva, E. Costa, I. I. Bittencourt, P. H. S. Brito, O. Holanda, and D. Demerval

of the addition of a component in all the system. (iii) Moreover, its manipula-
tions are restrict to Software Engineers. From the maintenance point of view,
there is less effort: when a change occurs, work it is only needed in that par-
ticular system place. From the evolution point of view, the frameworks are very
restrict for all the possible functionalities that were previously defined [10][7]
[9]. However, every software layer is directly attached to the specific know-
ledge domain the system was designed. In this way, there are implementation
needs when any knowledge change occurs.

3 Our Software Product Line Architecture

Figure 1 shows the proposed architecture, including all the necessary elements
for the ITS production in large scale with simplified modeling, interoperability
and scalability based on Semantic Web technologies. Every component fol-
lows the Massayo [4] semantic models, which are the learner, pedagogical and
domain ones.

Fig. 1. Our Software Product Line Architecture.

Pedagogical Multi-Agent SystemComponent-Based Kernel

Interface Component

PEAVPICP

Component-Based Kernel (CBK): For each ITS implementation there is
model instances, these instances will be applied to specify exactly the ITS par-
ticularity. The instantiation of this model requires the specification of the do-
main in which the same is proposed to teach, what pedagogical strategies must
be used, what must be represented on the student model, and the specification
of the problem types that will be exposed to the learners.

Interface Component (IC): This component represents exactly how the
learner will interact with the ITS. This interface has to be designed according
to the domain specifications which it will be inserted. For example, the possible
problem variations that may be represented by students have to be implemented,
as well as all the possible behaviors the tutoring system may have when dealing
with the student;

Interface Communication Protocol (ICP): This protocol defines the in-
teraction rules between Manager and Interface. In fact, it is possible to have
several Interface implementations, on the other hand, in order to each interface
implementation communicate correctly with the Manager, it is necessarily for
the interface to properly implement the protocol. This protocol, besides of de-
fining the rules that establish when the interface may suffer changes from the
system (originated from the Manager), and when interface may suffer change
by the learner. It will also specify behaviors semantic and rules, in order that the
own interface can be embedded with some intelligence level;

Pedagogical Multi-Agent System: The pedagogical agents are autonomous
entities which have a collective purpose of teaching the best possible way the
learners in the system. Another important point is that each pedagogical agent
has as function a single activity well defined. Beyond this, a pedagogical agent

Semantic Web-Based Software Product Line for Building Intelligent Tutoring Systems 131

has the power of adaptativity related to the ontologies specification which are
stored on the repository. However, it is possible to exist differences between
the agents to decide which approach might be best adopted in each moment of
interaction with the student. As several different pedagogical strategies may be
defined in a product line specification, there may exist a negotiation between
these agents to define the correct action of the system at each moment.

Pedagogical Evolution, Adaptability and Variability Protocol (PEAVP):
This protocol defines the interaction rules between Pedagogical Agents. With
this protocol, an agent will know the right moment to realize the environment,
to act, and to invoke an other agent to help in the accomplishment of its activity.
Beyond this, that protocol will be capable to define the actuation rules of the
agent when there is the possibility of competition between more than one agent
in choosing what is the right action to be taken. As quoted before, there may
exist disagreement on choosing the best action to be taken by the system.

4 Semantic Artifact Specication and Relationships

In this section, the artifacts related to the proposed Product Line will be dis-
cussed. These artifacts are semantically described in the Ontology Descriptions,
presented in Figures 1 and 2. Through these codes, all the possible educational
resources will be semantically annotated. This is important in order to exist an
automated process of building and instantiation of the Intelligent Tutoring Sys-
tems. Those artifacts compose the Component-Based Kernel (CBK), and they
are described below:

IntelligentEducationalEnvironment: This component represents the en-
vironment as a whole. Students, teachers and tutors see this environment as a
single entity, and they interact directly through it transparently.

PedagogicalIntelligentAgent: This component represents a type of agent
responsible for giving instruction in a particular knowledge domain to a certain
student. This agent has its own teaching strategy, it performs the planning of the
learner study and monitor his activities during the process of teaching him.

SupportAgent: This component represents the agents which will support
the effective work of the Pedagogical Agents. Actually, this agent will be re-
sponsible for maintaining the environment with external information to the in-
teraction between the participants and the environment.

EducacionalResource: This component represents all the educational re-
sources that could be used with the purpose of teaching. All resources should
be linked to a specification so that they can be found and used properly and
orderly.

StudentModel: This component represents the student model, it is used to
identify the characteristics of each student. And through this model, the system
resources will personalize the student results.

KnowledgeAssessmentMethod: This component represents the methods
that assess at which cognitive level, each student who is interacting with the en-
vironment, is. Therefore, for each round of interaction between the student and
the environment must exist a method that assesses the knowledge evolution of
the students. These methods may follow different theories, such as constructi-
vism, evolutionary and subjectivism.

132	 A. Silva, E. Costa, I. I. Bittencourt, P. H. S. Brito, O. Holanda, and D. Demerval

InferenceMechanism: This component represents the inference mecha-
nisms that are used in order to measure what are the possible approaches that
students should receive prior to the execution of them. Aiming to optimize the
education of the students, causing him to reach your goals as quickly as pos-
sible.

DomainModel: This component represents the syntax and semantics which
a particular domain is represented. It represents all the aspects that the student
needs to learn until the end of all their interactions.

TeachingPlan: This component represents a resource that describes at which
sequence the students must interact with each educational resource. Therefore,
depending on the situation in which the student is, the teaching plan should be
adjusted to give continuity in the teaching process properly.

PedagogicalStrategy: This component represents the pedagogical strategies
in which a particular pedagogical agent will compromise to address a certain
student throughout the teaching process.

Ontology Description 1: Inheritance relationship among all the entities.

01 : SupportAgent ⊑ IntelligentAgent
02 : PedagogicalIntelligentAgent ⊑ IntelligentAgent
03 : PedagogicalIntelligentAgent ⊑ EducacionalResource
04 : AudioClass ⊑ EducacionalResource
05 : ModalLogicBased ⊑ StudentModel
06 : PropositionalLogicBased ⊑ StudentModel
07 : OntologyBased ⊑ StudentModel
08 : Constructivist ⊑ KnowledgeAssessmentMethod
09 : AnalogyStrategyBased ⊑ PedagogicalStrategy
10 : SolvingProblemStrategyBased ⊑ PedagogicalStrategy
11 : KnowledgeAssessmentMethod ⊑ ┬
12 : StochasticMethod ⊑ InferenceMechanism
13 : LogicalModelBased ⊑ DomainModel
14 : OntologyModelBased ⊑ DomainModel
15 : NeuralNetworkModelBased ⊑ DomainModel
16 : BayesianNetworkModelBased ⊑ DomainModel
17 : Objetivistic ⊑ KnowledgeAssessmentMethod
18 : Rule-BasedReasoning ⊑ InferenceMechanism
19 : Case-BasedReasoning ⊑ InferenceMechanism
20 : Subjetivista ⊑ KnowledgeAssessmentMethod
21 : VideoClass ⊑ EducacionalResource
22 : SupportWebService ⊑ WebService
23 : PedagogicalWebService ⊑ EducacionalResource
24 : PedagogicalWebService ⊑ WebService

Furthermore, in order to representthe way these elements relate itself, a
hierarchy of entities using the concept of inheritance was created. For example,
in Ontology Description 1, the relations 02 and 03 express that an Intelligent
Pedagogical Agent (IntelligentPedagogicalAgent) can be seen as an intelligent
agent or as an educational resource (EducationalResource). This definition is
important because in the process of the construction of the Intelligent Peda-
gogical Agent for the environment, it should behave both as an intelligent agent
(respecting interaction protocols) as educational resource (Subject to a certain

Semantic Web-Based Software Product Line for Building Intelligent Tutoring Systems 133

meta-definition on how to specify this type of element). The other relations of
the Ontology Description 1 below comply with the same line of reasoning.

However, it is also necessary to relate the elements Computational involved
in the construction of educational environments adaptive and semantic level
of composition, because they define where they should be embedded elements
ranging from adapting to the personalized education plan. The Ontology De-
scription 2 represents the relationships between the entities at that level. The
Following is the meaning of the described compositions relations:

environmentHasSupportAgent: This relationship indicates that a Intelli-
gent Educational Environment (IntelligentEducationalEnvironment) has Agents
Support (SupportAgent), according to the relations 33 and 34. In relationship 33
is expressed as the element environmentHasASupportAgents is a subset of the
entity IntelligentEducationalEnvironment, and the same time, in relation 34,
it is stated that the same element environmentHasSupprtAgent has linked to it
from the elements type SupportAgent. Therefore, the environments must have
agents support in order to assist teaching activities promoted the pedagogical
agents, such as seeking information external environment, educational resour-
ces index, updated domain model, update the model student and so on.

environmentHasIntelligentPedagogicalAgents: This relationship indicates
that an Intelligent Educational Environment (IntelligentPedagogicalEnviron-
ment) has Agents Teaching (IntelligentPedagogicalAgents) as the relations 35
and 36. 35 is expressed in relation to the element environmentHasIntelligent-
PedagogicalAgents is a subset Element Intelligent Educational Environment
(IntelligentPedagogicalEnvironment), and that even in about 36, may have ele-
ments of type IntelligentPedagogicalAgents. The idea is that the environment
has bound to it agents capable of Education of policy knowledge that he intends
to teach. In reality, agents Pedagogical IntelligentPedagogicalAgents built in a
flexible manner in order to adjust to a given field of knowledge and a model
student.

environmentHasDomainModel: This relationship indicates that an Intel-
ligent Educational Environment (IntelligentEducationalEnvironment) has only
one domain model (DomainModel) according to the relationships 37, 38 and
39. In the relationship 37 is described that there is only one element of type
environmentHasDomainModel, and this element is a subset of the entity Intel-
ligent Educational Environment (IntelligentEducationalEnvironment) accord-
ing to relation 38. And in relationship 39, is described that an element of type
environmentHasDomainModel should have linked to it an element of the Do-
main Model type DomainModel. This relationship is important to restrict an
educational environment to just one knowledge domain. Indeed, this restriction
will be chained to the process of building educational environments, because
as the environment itself is restricted to a single domain knowledge, all other
elements will follow this principle.

environmentHasStudentModel: This relationship indicates that an Intelli-
gent Educational Environment (IntelligentEducationalEnvironment) has a sin-
gle student model StudentModel, according to the relationships 40, 41 and 42.
In the relationship 40 is expressed that there is a single element of the type en-
vironmentHasStudentModel, and in its turn, in the relationship 41, it represents
that the same element is a subset of the element IntelligentEducationalEnviron-
ment. And in the relationship 42, it is expressed that this element has a Student
Model StudentModel linked to it. In the same way that the domain model, the

134	 A. Silva, E. Costa, I. I. Bittencourt, P. H. S. Brito, O. Holanda, and D. Demerval

specified student model for the domain will chain in a sequence of adjusts in all
the elements that use them as reference to perform their tasks.

pedagogicalAgentsHasPedagogicalStrategies: This is the ratio represent-
ing the Pedagogical Agents (IntelligentPedagogicalAgents) must have strate-
gies teaching (PedagogicalStrategies). This entity is defined in relations 25 and
26. 25 is represented in relation to there is a link called (pedagogicalAgent-
sHasPedagogicalStrategies) that is built within the Intelligent Agent for Peda-
gogical (IntelligentPedagogicalAgents). In turn, the relation 26, that every
relationship is described has pedagogicalAgentsHasPedagogicalStrategies
pedagogical strategy. This educational strategy must be implements the follow-
ing model specification of the user model user, and educational resource, so that
it can be adapted to the knowledge being entered by their Agent.

pedagogicalAgentsHasInferenceMechanism: This is the relationship
which represents that the Pedagogical Agents (IntelligentPedagogicalAgents)
must have nnference mechanisms (InferenceMechanism). This entity is defined
in the relationships 27 and 28. Following the same reasoning to other composi-
tions, these relationships are represented that an entity (pedagogicalAgentsHas-
InferenceMechanism) is a subset of Intelligent Pedagogical Agent, and that it
has a mechanism inference associated with the purpose of making assumptions
about the best next approach that must be accomplished to the student for each
interaction. In the same way as the other entities, the actions taken by an ele-
ment of this type must be customized with respect to the domain model and the
student model.

pedagogicalAgentsHasAssesmentMethod: This is the relationship which
represents that the Pedagogical Agents (IntelligentPedagogicalAgents) must
have assessment methods (AssesmentMethod). This entity is defined in rela-
tionships 29 and 30. Also following the same reasoning to the other composi-
tions, in these relationships are represented that an entity (pedagogicalAgents-
HasAssesmentMethod) is a subset of Intelligent Pedagogical Agent, and that
it has a assessment method (AssesmentMethod). Still, this assessment method
will have as responsibility to evaluate the students’ development in relation to
the interactions that are occurring between the student and the environment.

pedagogicalAgentsHasTeachingPlan: This is the relationship which re-
presents that the Pedagogical Agents (IntelligentPedagogicalAgents) must have
teaching plans (TeachingPlan). This entity is defined in relationships 31 and 32,
which means (by analogy to other relationships) that an element pedagogical-
AgentsHasLearningPlan is embedded within the element IntelligentPedago-
gicalAgents, and that it has the element of the type TeachingPlan. The Plan of
teaching represents how the agent will lead the teaching to the student who the
same will be dealing with. In it, all the resources that will be used to teach the
student are related, and in which sequence of these resources will be available.

TeachingPlanHasEducationalResource: This relationship represents that
the Teaching Plans (TeachingPlan) should have Educational Resources (Educa-
tionalResource). This entity is defined in relationships 43 and 44, which means
(similarly to the other relationships) that an element TeachingPlanHasEdu-
cationalResource is embedded within the element TeachingPlan, and that the
same element have the type EducationalResource. As previously mentioned,the
teaching plan is who references the educational resources, and all educational
resources are accessed through what is described in the teaching plan.

Semantic Web-Based Software Product Line for Building Intelligent Tutoring Systems 135

Ontology Description 2: Composition Relationship among all the entities.

25 : ∃ pedagogicalAgentsHasPedagogicalStrategies ⊑ IntelligentPedagogicalAgent
26 : ┬ ⊑ ∀ pedagogicalAgentsHasPedagogicalStrategies:PedagogicalStrategy
27 : ∃ pedagogicalAgentsHasInferenceMechanism ⊑ IntelligentPedagogicalAgent
28 : ┬ ⊑ ∀ pedagogicalAgentHasInferenceMechanism:InferenceMechanism
29 : ∃ pedagogicalAgentHasAssesmentMethods ⊑ IntelligentPedagogicalAgent
30 : ┬ ⊑ ∀ pedagogicalAgentHasAssesmentMethods:KnowledgeAssessmentMethod
31 : ∃ pedagogicalAgentHasTeachingPlan ⊑ IntelligentPedagogicalAgent
32 : ┬ ⊑ ∀ pedagogicalAgentHasTeachingPlan:TeachingPlan
33 : ∃ environmentHasSupportAgent ⊑ IntelligentEducationalEnvironment
34 : ┬ ⊑ ∀ environmentHasSupportAgent:SupportAgent
35 : ∃ environmentHasPedagogicalAgents ⊑ IntelligentEducationalEnvironment
36 : ┬ ⊑ ∀ environmentHasPedagogicalAgents:IntelligentPedagogicalAgent
37 : ┬ ⊑ ≤ 1 environmentHasDomainModel
38 : ∃ environmentHasDomainModel ⊑ IntelligentEducationalEnvironment
39 : ┬ ⊑ ∀ environmentHasDomainModel:DomainModel
40 : ┬ ⊑ ≤ 1 environmentHasStudentModel
41 : ∃ environmentHasStudentModel ⊑ IntelligentEducationalEnvironment
42 : ┬ ⊑ ∀ environmentHasStudentModel:StudentModel
43 : ∃ TeachingPlanHasEducationalResource ⊑ TeachingPlan
44 : ┬ ⊑ ∀ TeachingPlanHasEducationalResource:EducationalResource

5 Conclusions and Future Works

This work proposes a new approach to building Intelligent Tutoring Systems
in large scale concerning the knowledge as the system’s main artifact, thus,
making the building process dependent on how this knowledge was conceived
and distributed. After a deep study about the whole building process of the
current approaches and all the resources which can be used on its building,
a semantic description to enable the automatic building and evolution of ITS
was created, as described by section 4. This description is part of a wider archi-
tecture which comprises the software product line architecture proposed on sec-
tion 1. This architecture manifests the idea of protocols to enable the evolution
and interaction through agents.

This new approach to construct ITS environments benefits to the author, in
the sense that programming background is not necessary, could be verified in
this proposal. From the implementation point of view, one could notice the soft-
ware product line approach is, nowadays, the largest considering the software
artifacts reusability, which is promising to the intelligent tutoring systems con-
text. As future work, a refinement of the specification through the addition of
new kinds of resources along with their corresponding implementations, such
as pedagogical strategies and new visualization forms.

References

V. Aleven, B. M. McLaren, J. Sewall, and K. R. Koedinger. The cognitive tutor 1.	
authoring tools (ctat): Preliminary evaluation of efficiency gains. In M. Ikeda, K.
D. Ashley, and T. W. Chan, editors, International Conference on Intelligent Tutor-
ing Systems, pages 61–70. Springer Verlag, 2006

136	 A. Silva, E. Costa, I. I. Bittencourt, P. H. S. Brito, O. Holanda, and D. Demerval

V. Aleven, B. M. McLaren, J. Sewall, and K. R. Koedinger. The cognitive tutor 2.	
authoring tools (ctat): Preliminary evaluation of efficiency gains. In Intelligent Tu-
toring Systems, pages 61–70, 2006
L. Aroyo, A. Inaba, L. Soldatova, and R. Mizoguchi. Ease: Evolutional authoring 3.	
support environment. In Intelligent Tutoring Systems, pages 140–149, 2004
I. I. Bittencourt, E. Costa, M. Silva, and E. Soares. A computational model for de-4.	
veloping semantic web-based educational systems. Know.-Based Syst., 22(4):302–
315, 2009
P. C. Clements and L. Northrop. Software Product Lines: Practices and Patterns. 5.	
SEI Series in Software Engineering. Addison-Wesley, August 2001
P. Dillenbourg, P. Mendelsohn, and D. Schneider. The distribution of pedagogical 6.	
roles in a multiagent learning environment. In Proceedings of the IFIP TC3/WG3.3
Working Conference on Lessons from Learning, pages 199–216, Amsterdam, The
Netherlands, The Netherlands, 1994. North-Holland Publishing Co.
M. Dragomiroiu, M. Ventuneac, I. Salomie, and T. Coffey. Application framework 7.	
development for virtual learning environments. In 25th Int. Conf. lnformation Tech-
nology lnterfaces IT, Cavtat, Croatia, 2003
E. El-Sheikh and J. Sticklen. A framework for developing intelligent tutoring sys-8.	
tems incorporating reusability. In IEA/AIE ’98: Proceedings of the 11th interna-
tional conference on Industrial and engineering applications of artificial intelli-
gence and expert systems, pages 558–567, London, UK, 1998. Springer-Verlag
L. Esmahi and F. Lin. Designing Distributed Learning Environment with Intelligent 9.	
Software Agents, chapter A Multiagent Framework for an Adaptive E-Learning
System, pages 218–241. Idea Group, 2005
B. Goodman, M. Geier, L. Haverty, F. Linton, , and R. McCready. A framework for 10.	
asynchronous collaborative learning and problem solving. In In the Proceedings
of the 10th International Conference on Artificial Intelligence in Education, AIED,
November 2001
K. R. Koedinger, J. R. Anderson, W. H. Hadley, and M. A. Mark. Intelligent tutor-11.	
ing goes to school in the big city. International Journal of Artificial Intelligence in
Education, 8:30–43, 1997
T. Murray. Authoring Tools for Advanced Technologies Learning Environments: 12.	
Toward cost-effective adaptive, interactive and intelligent educational software,
chapter An overview of intelligent tutoring system authoring tools: Updated analy-
sis of the state of the art, pages 493–546. Number 17. Kluwer Academic Publishers,
Netherlands, 2003
L. M. Northrop. Sei’s software product line tenets. IEEE Softw., 19(4):32–40, 13.	
2002
G. Picard, J. F. H¨ubner, O. Boissier, and M.-P. Gleizes. Reorganisation and self-or-14.	
ganisation in multiagent systems. In J. Sabater-Mir, editor, 7th European Workshop
on Multi-Agent Systems (EUMAS 2009), pages 66–78, 2009
M. Rodrigues, P. Novais, and M. F. Santos. Future challenges in intelligent tutoring 15.	
systems : a framework. In International Conference on Multimedia and Informa-
tion and Communication Technologies in Education, 2005
J. J. Rusk and D. Gasevic. Semantic web services-based reasoning in the design of 16.	
software product lines. In SPLC (2), pages 123–130, 2008
J. Self. The defining characteristics of intelligent tutoring systems research: Itss 17.	
care , precisely. International Journal of Artificial Intelligence in Education, 1999
I. D. V. Tamma, S. Phelps and M. Wooldridge. Ontologies for supporting negotia-18.	
tion in e-commerce. Engineering Applications of Artificial Intelligence, 18(2):223–
236, 2005

