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Abstract. The paper presents an algorithm for learning drifting and recurring 
user interests. The algorithm uses a prior-learning level to find out the current 
context. After that, searches into past observations for episodes that are relevant 
to the current context, ‘remembers’ them and ‘forgets’ the irrelevant ones. Fi-
nally, the algorithm learns only from the selected relevant examples. The ex-
periments conducted with a data set about calendar scheduling recommenda-
tions show that the presented algorithm improves significantly the predictive 
accuracy. 

1 Introduction 

Recently, many systems have been developed that recommend information, products 
and other items. These systems try to help users in finding pieces of information or 
other objects in which the users could be interested [8]. In a similar way, adaptive 
hypermedia systems build a model of the goals and preferences of each user and use 
this model to adapt the interaction to the needs of the user [3]. Many of those systems 
use machine learning methods for learning from observations about the user [15]. 
However, user interests and preferences can change over time. Some of the systems 
are provided with mechanisms that are able to track drifting user interests [11, 5, 1, 9, 
among others]. The problem of learning drifting user interests is relevant to the prob-
lem known as concept drift in the area of machine learning. The next section discusses 
different approaches about learning drifting concept and their applications for learning 
about users. 

In this paper it is assumed that the user interests do not only change, but also possi-
bly recur. The user interests can be quite wide and the user can currently focus her 
attention on a small subset of her broad interests. For example, the whole set of user 
interests in the case of Internet browsing can include interests that are relevant to her 
job, as well as her hobbies, etc. Even the user's job related interests could be quite 
extensive and interdisciplinary. A system that assists the user in web browsing should 
be flexible enough to recognize what her current interests are and provide her with 
relevant recommendations. A possible approach is to learn about current user interests 
from a time window that includes recent relevant observations only. However, if the 



current user interests often change, a precise user profile cannot be learned from a 
small set of relevant recent observations only. Hence, the system can search for past 
episodes where the user has demonstrated a similar set of interests and try to learn a 
more precise description of the current user interests, ‘remembering’ relevant and 
‘forgetting’ irrelevant observations.  

This paper presents such an algorithm for tracking changing user interests and pref-
erences in the presence of changing and recurring context. First, the algorithm learns 
about current context. Subsequently, it selects past episodes that are relevant to this 
context and eventually it learns concept descriptions from the selected examples. 

The next section discuses different approaches for tracking changes developed in 
areas of machine learning and user modeling. Section three presents a two-level learn-
ing algorithm that is applicable to learning changing and recurring user interests and 
preferences. Section four presents experiments of the designed algorithm with real 
data about calendar scheduling preferences as well as with an artificial data set.  

2 Related Works  

This section briefly introduces different approaches developed for tracking changing 
(also known as shifting, drifting or evolving) concepts. Such systems use different 
forgetting mechanisms to cope with this problem. Usually it is assumed that if the 
concept changes, then the old examples become irrelevant to the current period. The 
concept descriptions are learned from a set of recent examples called time window. 
For example, a software assistant for scheduling meetings is described in Mitchell et 
al. [11]. It employs induction on a decision tree to acquire assumptions about individ-
ual habits of arranging meetings. The learning method uses a time window to adapt 
faster to the changing preferences of the user. A system that learns user's interest pro-
files by monitoring web and e-mail habits is described in Grabtree and Soltysiak [15]. 
This research shows that user's interests can be tracked over time by measuring the 
similarity of interests within a time period. 

An improvement of the time window approach is the use of heuristics to adjust the 
size of the window. Widmer and Kubat [17] use a time window with a flexible size, 
which is adapted dynamically. The window size and thus the rate of forgetting is su-
pervised and dynamically adjusted by heuristics that monitor the learning process. 
Klingenberg and Renz [17] investigate the application of such an approach in the area 
of information retrieval.  

Maloof and Michalski [10] have developed a method for selecting training exam-
ples for a partial memory learning system. The forgetting mechanism of the method 
selects extreme examples that lie at the boundaries of concept descriptions and re-
moves from the partial memory examples that are irrelevant or outdated for the learn-
ing task. The method uses a time-based function to provide each instance with an age. 
Examples that are older than a certain age are removed from the partial memory. 

Nevertheless, pure time window approaches totally forget the observations that are 
outside the given window, or older than a certain age. The examples which remain in 



the partial memory are equally important for the learning algorithms. This is abrupt 
and total forgetting of old information which in some cases can be valuable.  

System use different approaches to avoid loss of useful knowledge learned from old 
examples. The CAP system [11] keeps old rules till they are competitive with the new 
ones. The architecture of FLORA systems [17] assumes that the learner maintains a 
store of concept descriptions relevant to previous contexts. When the learner suspects 
a context change, it will examine the potential of previous stored descriptions to pro-
vide better classification.  

An intelligent agent called NewsDude that is able to adapt to changing user inter-
ests is presented in Billsus, and Pazzani [1]. It learns two separate user models: one 
represents the user's short-term interests and the other represents the user's long-term 
interests. The short-term model is learned from the most recent observations only. It 
represents user models that can adjust more rapidly to the user's changing interests. If 
the short-term model cannot classify the story at all, it is passed on to the long-term 
model. The purpose of the long-term user model is to model the user's general prefer-
ences for news stories and compute predictions for stories that could not be classified 
by the short-term model. This hybrid user model is flexible enough to consider 
changes in user interests and keeps track of long-term user interests as well. Chiu and 
Webb [4] have used a similar approach - a dual student model for handling concept 
drift. 

Webb and Kuzmycz [14] suggest a data aging mechanism that places an initial 
weight of 1 on each observation. In a similar way Koychev and Schwab [9] have used 
a gradual forgetting function that provides each observation with a weight according 
to its appearance over time. 

An approach for tracking changing concepts that employs two-level learning algo-
rithms is presented in [16]. The assumption is that the domain provides explicit clues 
as to the current context (e.g. attributes with characteristic values). A two-level learn-
ing algorithm is presented that effectively adjusts to changing contexts by trying to 
detect (via meta-learning) contextual clues and using this information to focus the 
learning process. Another two-level learning algorithm assumes that concepts are 
likely to be stable for some period of time [6]. This approach uses batch learning and 
contextual clustering to detect stable concepts and to extract hidden context. 

The approach presented in this paper also employs a two-learning level. However, 
it does not assume that the attributes represent current context explicitly. It starts from 
the assumption that the recent observations are able to provide information about 
current context. The recent relevant observations cannot be sufficient to learn an accu-
rate description of the concept, but the learned description is accurate enough to be 
able to distinguish the past episodes that are relevant to the current context. Then the 
algorithm constructs a new training set, ‘remembers’ relevant and ‘forgets’ irrelevant 
examples. Finally, the concept description is learned from this set of examples. 



3 Tracking Changes through Prior-Leaning of Context 

When the concept drifts and possibly recurs, we can use time window based forgetting 
mechanisms. However, the recent examples that represent the current context can be 
insufficient for learning accurate descriptions. Therefore, if the context recurs, then 
remembering the ‘old’ examples that are relevant to the current context should enlarge 
the size of the training set and thus improve the predictive accuracy. However, the 
context is frequently hidden and explicit indicators about its changes and recurrences 
cannot be discovered easily. Hence, in such cases the aim should be to learn more 
about the current context and then to search for old observations that were made in a 
similar context. An algorithm that makes use of this idea consists of the following 
three steps: 

1. Learning about current context. A relatively small time window is used 
to learn a description of the current context (e.g. learning a description 
of the user interests based on the recent observations about the user). 

2. Remembering relevant past episodes. The learned description in step 1. 
is tested against the rest of the training set. The episodes that show a 
predictive accuracy that is greater than a predefined threshold are se-
lected (i.e. selecting the episodes that are relevant to the current con-
text). 

3. Learning from context-related examples. The new data set selected in 
step 2. is used for learning a new description of the current user inter-
ests, which is expected to be more accurate. 

Let’s call this algorithm COPL (COntext Prior Learning algorithm). The COPL al-
gorithm requires a predefinition of the following settings:  

• The size of the time window used in step 1. This time window should be long 
enough to allow a sufficiently accurate description of the current context to be 
learned, as well as short enough to be able to track fast changing user interests. 
Some enhancements like adaptive time window [17] can be employed aiming at 
improving predictive accuracy. 

• The episode selection criterion for step 2. This criterion should be able to distin-
guish the episodes that are relevant to the learned context in step 1. The criterion 
should be resistant to noise in the sequence of examples. 

• The threshold for the episode-selecting criterion in step 2. After the episode selec-
tion criterion has been established, a suitable threshold should be defined, which 
should assure as much as possible that only the relevant old examples be selected.  

• The learning algorithms used in steps 1. and 3. The same or different learning algo-
rithms can be used in those steps. 
Those settings should be defined empirically and based on preliminary investiga-

tion of the application domain. The implementation of the algorithm described in the 
next section gives an example of such definitions.  



The next section presents the results from experiments that compare the designed 
algorithm where the main idea is to extend the set of examples by recovering relevant 
past examples as opposite to the CAP and FLORA approaches where the model was 
extended by past rules. 

4 Experiments 

This section present results from experiments with the COPL algorithm. Two data sets 
are used in the experiments. The first one contains data from a real use of a calendar 
manager tool aiming at helping the user to scheduling meetings [Mitchell et al. [11]. 
The second one is an artificial data set [13] that is used in many papers in the area of 
Machine Learning dedicated to concept drift (e.g. [17], [10], etc.) 

Mitchell et al. [11] have developed a software assistant that helps schedule a par-
ticular user's calendar: a calendar manager called CAP (Calendar APprentice). CAP 
learns the users' scheduling preferences through routine use, enabling it to give cus-
tomized scheduling advice to each user. It can be considered as an analogy to a human 
secretary who might assist someone in managing a calendar. CAP employs induction 
on decision tree to acquire assumptions about individual habits of arranging meetings. 
The learning method uses a time window to adapt faster to the changing preferences of 
the user. The newly generated rules are merged with old ones. The rules that perform 
poorly on the test set drop out of the list. 

The user's scheduling preferences depend very much on a hidden context. Some of 
this context can be assumed and explicitly presented and used for improving predic-
tive accuracy (e.g. academic semesters, etc.). However, there are many other events 
and conditions that can influence the meeting schedule and which cannot be explicitly 
represented by an attribute space (e.g. room availability, the schedule preferences of 
other participants of a meeting and many others). Under this condition, the predictive 
accuracy of the system can oscillate with very high amplitude. A more comprehensive 
investigation and analysis of the specifics of the domain can be found in Mitchell et al. 
[11]. 

The section below presents the results from experiments conducted with the CAP 
data set1. The attributes used for describing the calendar events in the current experi-
ments are listed in Table 1. The task is to predict the following meeting characteris-
tics:  

• Duration - the duration of the meeting in minutes e.g. 30, 60, 90, etc. (number of 
values legal - 13);  

• Day-of-week - the day of the week of this meeting; e.g. Monday, Thursday, etc. 
(number of legal values - 6); 

• Location – the place where the meeting is held; e.g. weh5409 (number of legal 
values - 142); 

                                                           
1 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-5/www/cap-data.html 



• Start-time - the time at which the meeting begins, in military time; e.g. 930 
(9:30am), 1400 (2pm), etc.) (number of legal values - 21); 

 
Third-most-common-time-last-60-days-this-meeting-type  
Third-most-common-time-last-60-days  
Second-most-common-time-last-60-days-this-meeting-type  
Second-most-common-time-last-60-days  
Most-common-time-these-attendees-last-60-days  
Most-common-time-these-attendees  
Most-common-time-last-60-days-this-meeting-type  
Most-common-time-last-60-days  
Most-common-day-these-attendees-last-60-days  
Most-common-day-these-attendees  
Duration-of-next-meeting-with-these-attendees  
Duration-of-last-meeting-with-these-attendees  
Day-of-week-of-next-meeting-with-these-attendees  
Day-of-week-of-last-meeting-with-these-attendees  
Required-seminar-type  
Required-course-name  
Required-speakers  
Single-person?  
Action  
CMU-attendees?  
Group-attendees?  
Position-attendees  
Department-attendees  
Sponsor-attendees  
Known-attendees?  
Duration 
Day-of-week 
Location 
Start-time 

Table 1. The list of features that are used for describing calendar events. 

The settings of the algorithm listed in the previous section are defined for the con-
ducted experiments as follows: 

• The size of the time window: Preliminary experiments show that for different pre-
diction tasks the size of the window that produces best predictive accuracy can be 
quite different. For the given data set the best accuracy is reached for the window 
of the following size: Location - 200; Duration - 350; Start-time - 350; Day-of-
week - 400. 

• The episode selection criterion for step 2. The criterion used in this implementation 
selects the examples je  for the new data set taking into account the average predic-

tive accuracy in its neighborhood. In particular, a small episode around the example 
which includes the previous two and next two examples, is used. An event will be 
selected for the new training set newj Se ∈  if the average predictive accuracy for 

this episode is greater than or equal to a predefined threshold τ . 

•  The threshold for the episode-selecting criterion in step 2. is set up to 6.0=τ  in 
all experiments.  



• The learning algorithm used in steps 1. and 3. is Induction on Decision Tree (aka 
ID3) [12]. This algorithm was used in CAP, which makes the comparison between 
different approaches clearer. This algorithm produces an explicit user profile (e.g. 
set of rules) that is understandable for the user. This is an important advantage from 
the viewpoint of user modeling. 

 
Prediction task CAP ID3-FM COPL (ID3) 
Location 64% 58% 67% 
Duration 63% 71% 79% 
Start-time 34% 39% 48% 
Day-of-week 50% 52% 66% 
Average 53% 55% 65% 

Table 2. Comparison of predictive accuracy for the User. 

Table 2 presents the results from experiments with data for User 1. In this experi-
ment a new description of user preferences is learned after each 10 meetings. The 
learned description at each step is tested on the next 10 meetings. The line in the table 
presents the accuracy of prediction for different learning tasks. The results are com-
pared with the CAP. The average predictive accuracy of the ID3 with full memory 
(ID3-FM) to some extent outperforms the CAP. This is slightly surprising, because 
CAP is designed to track changing user preferences better than a simple learning algo-
rithm. An explanation of this phenomenon is that some implementation details like 
attribute selection criteria and used pruning method can change the outcome of the 
algorithm. The use of one level time window, even with an adaptive size, does not 
improve the predictive accuracy because the user preferences alternate very often and 
with high amplitude. The comparison between full-memory learning algorithm (ID3-
FM) and the presented two-level learning algorithm is fully compatible because the 
same implementation of the basic learning algorithm is used. The results from the 
experiments show that the context-learning algorithm is able to improve the average 
predictive accuracy for each feature. All those improvements are significant (using t-
test with 01.0=α ).  

Figure 1 shows the results from experiments for the predicted features. It can be 
seen that the user's preferences can change abruptly, which leads to a dramatic de-
crease of the predictive accuracy. The presented two-level algorithm tracks changes 
better than the basic algorithm and produces a significantly improved average accu-
racy. 

Experiments with this data set, which use the Winnow and Weighted-Majority al-
gorithms, were reported in Blum [2]. The Winnow with a large feature set reaches the 
best average accuracy, which is equal to that reached by the algorithm in the presented 
experiments. However, these algorithms are not suitable for producing explicit user 
profiles, which is considered to be important in the area of user modeling.  



Day-of-Week

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

200 400 600 800 1000 1200 1400 1600

Events

P
re

di
ct

iv
e 

A
cc

ur
ac

y

Context Learning ID3-FM

Duration

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

200 400 600 800 1000 1200 1400 1600

Events

P
re

di
ct

iv
e 

A
cc

ur
ac

y

Contex learning ID3-FM  
Location

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

200 400 600 800 1000 1200 1400 1600

Events

P
re

di
ct

iv
e 

A
cc

ur
ac

y

Context learning ID3-FM

Start Time

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

200 400 600 800 1000 1200 1400 1600

Events

P
re

di
ct

iv
e 

A
cc

ur
ac

y

ID3-FM Context Learning  
Fig. 1. The improvement in predictive accuracy for the predicted features. 

To compare the presented approach with FLORA3, which is able to recover ‘old’ 
rules learned in a similar context [17], experiments were conducted also with 
STAGGER data set [13]. The instance space of a simple blocks world is described by 
three attributes size = {small, medium, large}, color = {red, green, blue}, and shape = 
{square, circular, triangular}. There is a sequence of three target concepts (1) size = 
small and color = red, (2) color = green or shape = circular and (3) size = (medium 
or large). 120 training instances are generated randomly and classified according to 
the current concept. The underlying concept is forced to change after every 40 training 
examples: (1)-(2)-(3). A concept description is learned from initial n examples. After 
each learning phase the predictive accuracy is tested on an independent test set of 100 
instances. The result are averaged over 10 runs. The concept recurrence is simulated 
by generating this sequence three times: (1)-(2)-(3)-(1)-(2)-(3)-(1)-(2)-(3) [17]. 

The parameters for the COPL algorithm in this experiment are set up as follows: 
the size of the time window used at step 1 is 18; the episode selection criteria and the 
related threshold remain the same as above; and the used learning algorithms at step 1 
and 3 is Naïve Bayes Classifier (NBC) to demonstrate the ability of the presented two-
level algorithm to work with other learning algorithms.  



 
Algorithm\Examples: 2-120 121-240 241-360 
FLORA 3 context  85.9% 85.4% 83.5% 
COPL (NBC) 85.3% 85.6% 87.1% 

Table 3. Comparison between FLORA3 and COPL (NBC) on recurring context. 

Table 3 compares the presented algorithm with FLORA3 [17]. On the basic data set 
(1-120) the FLORA3 produces a slightly better accuracy (i.e. non significant differ-
ence). On recurring concepts (i.e. examples 121-360) both algorithms perform better 
than the ones that do not recover the context (e.g. FLORA2 [17]- 81.5%). The COPL 
(NBC) algorithm benefits from the recurrence of context better than FLORA3 (see 
columns 121-240 and 241-360 of Table 3). Moreover, the predictive accuracy of the 
presented algorithm increases when context recurs, which shows that it really takes 
advantage of context recurrence. For example, on second recurrence of the concept 
(see column 241-360 of Table 3) the COPL algorithm produces a significantly better 
(using t-test with 01.0=α ) average accuracy than FLORA3.  

5 Conclusion 

The paper describes a two-level learning algorithm that is able to track changing user 
interests and preferences through prior-learning of context. The algorithm benefits 
from the recurrence of the context by remembering the relevant observations and 
forgetting the irrelevant ones. The presented approach provides a general framework 
for dealing with changing and recurring user interests that can be used with different 
machine learning algorithms. Conducted experiments with recommendations about 
calendar scheduling demonstrate that the approach is able to improve the predictive 
accuracy significantly. Additional experiments conducted with an artificial data set 
demonstrate that the presented algorithm really makes use of context recurrence and 
increases the predictive accuracy when the context recurs. Further investigations of the 
episode selection criterion and designing a mechanism for its threshold detection are 
expected to improve the predictive accuracy of the algorithm additionally.  

The presented two-level learning algorithm can be embedded in any type of adap-
tive hypermedia system where some observations during the interaction with the user 
have been collected and then used to learn about the user. The knowledge learned 
about the user can then be used to adapt the interaction to the needs of that user. Pro-
viding the user with adequate recommendations in the presence of fast changing user’s 
interests and preferences is, for example, vital for many contemporary recommenda-
tion systems. Future applications of the algorithm are expected to provide fruitful 
ideas for the development of mechanism for dynamical adaptation of the algorithm 
parameters.  
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