
Tracking Changing User Interests through Prior-
Leaning of Context

Ivan Koychev

FhG - FIT.ICON
D-53754 Sankt Augustin, Germany

phone: +49 2241 14 2194, fax: +49 2241 14 2146
ivan.koychev@fit.fraunhofer.de

Abstract. The paper presents an algorithm for learning drifting and recurring
user interests. The algorithm uses a prior-learning level to find out the current
context. After that, searches into past observations for episodes that are relevant
to the current context, ‘remembers’ them and ‘forgets’ the irrelevant ones. Fi-
nally, the algorithm learns only from the selected relevant examples. The ex-
periments conducted with a data set about calendar scheduling recommenda-
tions show that the presented algorithm improves significantly the predictive
accuracy.

1 Introduction

Recently, many systems have been developed that recommend information, products
and other items. These systems try to help users in finding pieces of information or
other objects in which the users could be interested [8]. In a similar way, adaptive
hypermedia systems build a model of the goals and preferences of each user and use
this model to adapt the interaction to the needs of the user [3]. Many of those systems
use machine learning methods for learning from observations about the user [15].
However, user interests and preferences can change over time. Some of the systems
are provided with mechanisms that are able to track drifting user interests [11, 5, 1, 9,
among others]. The problem of learning drifting user interests is relevant to the prob-
lem known as concept drift in the area of machine learning. The next section discusses
different approaches about learning drifting concept and their applications for learning
about users.

In this paper it is assumed that the user interests do not only change, but also possi-
bly recur. The user interests can be quite wide and the user can currently focus her
attention on a small subset of her broad interests. For example, the whole set of user
interests in the case of Internet browsing can include interests that are relevant to her
job, as well as her hobbies, etc. Even the user's job related interests could be quite
extensive and interdisciplinary. A system that assists the user in web browsing should
be flexible enough to recognize what her current interests are and provide her with
relevant recommendations. A possible approach is to learn about current user interests
from a time window that includes recent relevant observations only. However, if the

current user interests often change, a precise user profile cannot be learned from a
small set of relevant recent observations only. Hence, the system can search for past
episodes where the user has demonstrated a similar set of interests and try to learn a
more precise description of the current user interests, ‘remembering’ relevant and
‘forgetting’ irrelevant observations.

This paper presents such an algorithm for tracking changing user interests and pref-
erences in the presence of changing and recurring context. First, the algorithm learns
about current context. Subsequently, it selects past episodes that are relevant to this
context and eventually it learns concept descriptions from the selected examples.

The next section discuses different approaches for tracking changes developed in
areas of machine learning and user modeling. Section three presents a two-level learn-
ing algorithm that is applicable to learning changing and recurring user interests and
preferences. Section four presents experiments of the designed algorithm with real
data about calendar scheduling preferences as well as with an artificial data set.

2 Related Works

This section briefly introduces different approaches developed for tracking changing
(also known as shifting, drifting or evolving) concepts. Such systems use different
forgetting mechanisms to cope with this problem. Usually it is assumed that if the
concept changes, then the old examples become irrelevant to the current period. The
concept descriptions are learned from a set of recent examples called time window.
For example, a software assistant for scheduling meetings is described in Mitchell et
al. [11]. It employs induction on a decision tree to acquire assumptions about individ-
ual habits of arranging meetings. The learning method uses a time window to adapt
faster to the changing preferences of the user. A system that learns user's interest pro-
files by monitoring web and e-mail habits is described in Grabtree and Soltysiak [15].
This research shows that user's interests can be tracked over time by measuring the
similarity of interests within a time period.

An improvement of the time window approach is the use of heuristics to adjust the
size of the window. Widmer and Kubat [17] use a time window with a flexible size,
which is adapted dynamically. The window size and thus the rate of forgetting is su-
pervised and dynamically adjusted by heuristics that monitor the learning process.
Klingenberg and Renz [17] investigate the application of such an approach in the area
of information retrieval.

Maloof and Michalski [10] have developed a method for selecting training exam-
ples for a partial memory learning system. The forgetting mechanism of the method
selects extreme examples that lie at the boundaries of concept descriptions and re-
moves from the partial memory examples that are irrelevant or outdated for the learn-
ing task. The method uses a time-based function to provide each instance with an age.
Examples that are older than a certain age are removed from the partial memory.

Nevertheless, pure time window approaches totally forget the observations that are
outside the given window, or older than a certain age. The examples which remain in

the partial memory are equally important for the learning algorithms. This is abrupt
and total forgetting of old information which in some cases can be valuable.

System use different approaches to avoid loss of useful knowledge learned from old
examples. The CAP system [11] keeps old rules till they are competitive with the new
ones. The architecture of FLORA systems [17] assumes that the learner maintains a
store of concept descriptions relevant to previous contexts. When the learner suspects
a context change, it will examine the potential of previous stored descriptions to pro-
vide better classification.

An intelligent agent called NewsDude that is able to adapt to changing user inter-
ests is presented in Billsus, and Pazzani [1]. It learns two separate user models: one
represents the user's short-term interests and the other represents the user's long-term
interests. The short-term model is learned from the most recent observations only. It
represents user models that can adjust more rapidly to the user's changing interests. If
the short-term model cannot classify the story at all, it is passed on to the long-term
model. The purpose of the long-term user model is to model the user's general prefer-
ences for news stories and compute predictions for stories that could not be classified
by the short-term model. This hybrid user model is flexible enough to consider
changes in user interests and keeps track of long-term user interests as well. Chiu and
Webb [4] have used a similar approach - a dual student model for handling concept
drift.

Webb and Kuzmycz [14] suggest a data aging mechanism that places an initial
weight of 1 on each observation. In a similar way Koychev and Schwab [9] have used
a gradual forgetting function that provides each observation with a weight according
to its appearance over time.

An approach for tracking changing concepts that employs two-level learning algo-
rithms is presented in [16]. The assumption is that the domain provides explicit clues
as to the current context (e.g. attributes with characteristic values). A two-level learn-
ing algorithm is presented that effectively adjusts to changing contexts by trying to
detect (via meta-learning) contextual clues and using this information to focus the
learning process. Another two-level learning algorithm assumes that concepts are
likely to be stable for some period of time [6]. This approach uses batch learning and
contextual clustering to detect stable concepts and to extract hidden context.

The approach presented in this paper also employs a two-learning level. However,
it does not assume that the attributes represent current context explicitly. It starts from
the assumption that the recent observations are able to provide information about
current context. The recent relevant observations cannot be sufficient to learn an accu-
rate description of the concept, but the learned description is accurate enough to be
able to distinguish the past episodes that are relevant to the current context. Then the
algorithm constructs a new training set, ‘remembers’ relevant and ‘forgets’ irrelevant
examples. Finally, the concept description is learned from this set of examples.

3 Tracking Changes through Prior-Leaning of Context

When the concept drifts and possibly recurs, we can use time window based forgetting
mechanisms. However, the recent examples that represent the current context can be
insufficient for learning accurate descriptions. Therefore, if the context recurs, then
remembering the ‘old’ examples that are relevant to the current context should enlarge
the size of the training set and thus improve the predictive accuracy. However, the
context is frequently hidden and explicit indicators about its changes and recurrences
cannot be discovered easily. Hence, in such cases the aim should be to learn more
about the current context and then to search for old observations that were made in a
similar context. An algorithm that makes use of this idea consists of the following
three steps:

1. Learning about current context. A relatively small time window is used
to learn a description of the current context (e.g. learning a description
of the user interests based on the recent observations about the user).

2. Remembering relevant past episodes. The learned description in step 1.
is tested against the rest of the training set. The episodes that show a
predictive accuracy that is greater than a predefined threshold are se-
lected (i.e. selecting the episodes that are relevant to the current con-
text).

3. Learning from context-related examples. The new data set selected in
step 2. is used for learning a new description of the current user inter-
ests, which is expected to be more accurate.

Let’s call this algorithm COPL (COntext Prior Learning algorithm). The COPL al-
gorithm requires a predefinition of the following settings:

• The size of the time window used in step 1. This time window should be long
enough to allow a sufficiently accurate description of the current context to be
learned, as well as short enough to be able to track fast changing user interests.
Some enhancements like adaptive time window [17] can be employed aiming at
improving predictive accuracy.

• The episode selection criterion for step 2. This criterion should be able to distin-
guish the episodes that are relevant to the learned context in step 1. The criterion
should be resistant to noise in the sequence of examples.

• The threshold for the episode-selecting criterion in step 2. After the episode selec-
tion criterion has been established, a suitable threshold should be defined, which
should assure as much as possible that only the relevant old examples be selected.

• The learning algorithms used in steps 1. and 3. The same or different learning algo-
rithms can be used in those steps.
Those settings should be defined empirically and based on preliminary investiga-

tion of the application domain. The implementation of the algorithm described in the
next section gives an example of such definitions.

The next section presents the results from experiments that compare the designed
algorithm where the main idea is to extend the set of examples by recovering relevant
past examples as opposite to the CAP and FLORA approaches where the model was
extended by past rules.

4 Experiments

This section present results from experiments with the COPL algorithm. Two data sets
are used in the experiments. The first one contains data from a real use of a calendar
manager tool aiming at helping the user to scheduling meetings [Mitchell et al. [11].
The second one is an artificial data set [13] that is used in many papers in the area of
Machine Learning dedicated to concept drift (e.g. [17], [10], etc.)

Mitchell et al. [11] have developed a software assistant that helps schedule a par-
ticular user's calendar: a calendar manager called CAP (Calendar APprentice). CAP
learns the users' scheduling preferences through routine use, enabling it to give cus-
tomized scheduling advice to each user. It can be considered as an analogy to a human
secretary who might assist someone in managing a calendar. CAP employs induction
on decision tree to acquire assumptions about individual habits of arranging meetings.
The learning method uses a time window to adapt faster to the changing preferences of
the user. The newly generated rules are merged with old ones. The rules that perform
poorly on the test set drop out of the list.

The user's scheduling preferences depend very much on a hidden context. Some of
this context can be assumed and explicitly presented and used for improving predic-
tive accuracy (e.g. academic semesters, etc.). However, there are many other events
and conditions that can influence the meeting schedule and which cannot be explicitly
represented by an attribute space (e.g. room availability, the schedule preferences of
other participants of a meeting and many others). Under this condition, the predictive
accuracy of the system can oscillate with very high amplitude. A more comprehensive
investigation and analysis of the specifics of the domain can be found in Mitchell et al.
[11].

The section below presents the results from experiments conducted with the CAP
data set1. The attributes used for describing the calendar events in the current experi-
ments are listed in Table 1. The task is to predict the following meeting characteris-
tics:

• Duration - the duration of the meeting in minutes e.g. 30, 60, 90, etc. (number of
values legal - 13);

• Day-of-week - the day of the week of this meeting; e.g. Monday, Thursday, etc.
(number of legal values - 6);

• Location – the place where the meeting is held; e.g. weh5409 (number of legal
values - 142);

1 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-5/www/cap-data.html

• Start-time - the time at which the meeting begins, in military time; e.g. 930
(9:30am), 1400 (2pm), etc.) (number of legal values - 21);

Third-most-common-time-last-60-days-this-meeting-type
Third-most-common-time-last-60-days
Second-most-common-time-last-60-days-this-meeting-type
Second-most-common-time-last-60-days
Most-common-time-these-attendees-last-60-days
Most-common-time-these-attendees
Most-common-time-last-60-days-this-meeting-type
Most-common-time-last-60-days
Most-common-day-these-attendees-last-60-days
Most-common-day-these-attendees
Duration-of-next-meeting-with-these-attendees
Duration-of-last-meeting-with-these-attendees
Day-of-week-of-next-meeting-with-these-attendees
Day-of-week-of-last-meeting-with-these-attendees
Required-seminar-type
Required-course-name
Required-speakers
Single-person?
Action
CMU-attendees?
Group-attendees?
Position-attendees
Department-attendees
Sponsor-attendees
Known-attendees?
Duration
Day-of-week
Location
Start-time

Table 1. The list of features that are used for describing calendar events.

The settings of the algorithm listed in the previous section are defined for the con-
ducted experiments as follows:

• The size of the time window: Preliminary experiments show that for different pre-
diction tasks the size of the window that produces best predictive accuracy can be
quite different. For the given data set the best accuracy is reached for the window
of the following size: Location - 200; Duration - 350; Start-time - 350; Day-of-
week - 400.

• The episode selection criterion for step 2. The criterion used in this implementation
selects the examples je for the new data set taking into account the average predic-

tive accuracy in its neighborhood. In particular, a small episode around the example
which includes the previous two and next two examples, is used. An event will be
selected for the new training set newj Se ∈ if the average predictive accuracy for

this episode is greater than or equal to a predefined threshold τ .

• The threshold for the episode-selecting criterion in step 2. is set up to 6.0=τ in
all experiments.

• The learning algorithm used in steps 1. and 3. is Induction on Decision Tree (aka
ID3) [12]. This algorithm was used in CAP, which makes the comparison between
different approaches clearer. This algorithm produces an explicit user profile (e.g.
set of rules) that is understandable for the user. This is an important advantage from
the viewpoint of user modeling.

Prediction task CAP ID3-FM COPL (ID3)
Location 64% 58% 67%
Duration 63% 71% 79%
Start-time 34% 39% 48%
Day-of-week 50% 52% 66%
Average 53% 55% 65%

Table 2. Comparison of predictive accuracy for the User.

Table 2 presents the results from experiments with data for User 1. In this experi-
ment a new description of user preferences is learned after each 10 meetings. The
learned description at each step is tested on the next 10 meetings. The line in the table
presents the accuracy of prediction for different learning tasks. The results are com-
pared with the CAP. The average predictive accuracy of the ID3 with full memory
(ID3-FM) to some extent outperforms the CAP. This is slightly surprising, because
CAP is designed to track changing user preferences better than a simple learning algo-
rithm. An explanation of this phenomenon is that some implementation details like
attribute selection criteria and used pruning method can change the outcome of the
algorithm. The use of one level time window, even with an adaptive size, does not
improve the predictive accuracy because the user preferences alternate very often and
with high amplitude. The comparison between full-memory learning algorithm (ID3-
FM) and the presented two-level learning algorithm is fully compatible because the
same implementation of the basic learning algorithm is used. The results from the
experiments show that the context-learning algorithm is able to improve the average
predictive accuracy for each feature. All those improvements are significant (using t-
test with 01.0=α).

Figure 1 shows the results from experiments for the predicted features. It can be
seen that the user's preferences can change abruptly, which leads to a dramatic de-
crease of the predictive accuracy. The presented two-level algorithm tracks changes
better than the basic algorithm and produces a significantly improved average accu-
racy.

Experiments with this data set, which use the Winnow and Weighted-Majority al-
gorithms, were reported in Blum [2]. The Winnow with a large feature set reaches the
best average accuracy, which is equal to that reached by the algorithm in the presented
experiments. However, these algorithms are not suitable for producing explicit user
profiles, which is considered to be important in the area of user modeling.

Day-of-Week

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

200 400 600 800 1000 1200 1400 1600

Events

P
re

di
ct

iv
e

A
cc

ur
ac

y

Context Learning ID3-FM

Duration

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

200 400 600 800 1000 1200 1400 1600

Events

P
re

di
ct

iv
e

A
cc

ur
ac

y

Contex learning ID3-FM
Location

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

200 400 600 800 1000 1200 1400 1600

Events

P
re

di
ct

iv
e

A
cc

ur
ac

y

Context learning ID3-FM

Start Time

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

200 400 600 800 1000 1200 1400 1600

Events

P
re

di
ct

iv
e

A
cc

ur
ac

y

ID3-FM Context Learning
Fig. 1. The improvement in predictive accuracy for the predicted features.

To compare the presented approach with FLORA3, which is able to recover ‘old’
rules learned in a similar context [17], experiments were conducted also with
STAGGER data set [13]. The instance space of a simple blocks world is described by
three attributes size = {small, medium, large}, color = {red, green, blue}, and shape =
{square, circular, triangular}. There is a sequence of three target concepts (1) size =
small and color = red, (2) color = green or shape = circular and (3) size = (medium
or large). 120 training instances are generated randomly and classified according to
the current concept. The underlying concept is forced to change after every 40 training
examples: (1)-(2)-(3). A concept description is learned from initial n examples. After
each learning phase the predictive accuracy is tested on an independent test set of 100
instances. The result are averaged over 10 runs. The concept recurrence is simulated
by generating this sequence three times: (1)-(2)-(3)-(1)-(2)-(3)-(1)-(2)-(3) [17].

The parameters for the COPL algorithm in this experiment are set up as follows:
the size of the time window used at step 1 is 18; the episode selection criteria and the
related threshold remain the same as above; and the used learning algorithms at step 1
and 3 is Naïve Bayes Classifier (NBC) to demonstrate the ability of the presented two-
level algorithm to work with other learning algorithms.

Algorithm\Examples: 2-120 121-240 241-360
FLORA 3 context 85.9% 85.4% 83.5%
COPL (NBC) 85.3% 85.6% 87.1%

Table 3. Comparison between FLORA3 and COPL (NBC) on recurring context.

Table 3 compares the presented algorithm with FLORA3 [17]. On the basic data set
(1-120) the FLORA3 produces a slightly better accuracy (i.e. non significant differ-
ence). On recurring concepts (i.e. examples 121-360) both algorithms perform better
than the ones that do not recover the context (e.g. FLORA2 [17]- 81.5%). The COPL
(NBC) algorithm benefits from the recurrence of context better than FLORA3 (see
columns 121-240 and 241-360 of Table 3). Moreover, the predictive accuracy of the
presented algorithm increases when context recurs, which shows that it really takes
advantage of context recurrence. For example, on second recurrence of the concept
(see column 241-360 of Table 3) the COPL algorithm produces a significantly better
(using t-test with 01.0=α) average accuracy than FLORA3.

5 Conclusion

The paper describes a two-level learning algorithm that is able to track changing user
interests and preferences through prior-learning of context. The algorithm benefits
from the recurrence of the context by remembering the relevant observations and
forgetting the irrelevant ones. The presented approach provides a general framework
for dealing with changing and recurring user interests that can be used with different
machine learning algorithms. Conducted experiments with recommendations about
calendar scheduling demonstrate that the approach is able to improve the predictive
accuracy significantly. Additional experiments conducted with an artificial data set
demonstrate that the presented algorithm really makes use of context recurrence and
increases the predictive accuracy when the context recurs. Further investigations of the
episode selection criterion and designing a mechanism for its threshold detection are
expected to improve the predictive accuracy of the algorithm additionally.

The presented two-level learning algorithm can be embedded in any type of adap-
tive hypermedia system where some observations during the interaction with the user
have been collected and then used to learn about the user. The knowledge learned
about the user can then be used to adapt the interaction to the needs of that user. Pro-
viding the user with adequate recommendations in the presence of fast changing user’s
interests and preferences is, for example, vital for many contemporary recommenda-
tion systems. Future applications of the algorithm are expected to provide fruitful
ideas for the development of mechanism for dynamical adaptation of the algorithm
parameters.

References

1. Billsus, D., and Pazzani, M. J.: A Hybrid User Model for News Classification. In Kay
J. (ed.), UM99: Proceedings of the Seventh International Conference on User Model-
ing, Lecture Notes in Computer Science, Springer-Verlag (1999) pp. 99-108.

2. Blum, A.: Empirical Support of Winnow and Weighted-Majority Algorithms: Results
on a Calendar Scheduling Domain. Machine Learning 26 (1997): 5-23.

3. Brusikovsky, P. Adaptive Hypermedia. User Modeling and User-Adapted Interaction
11 (2001) 87-110.

4. Chiu, B. and Webb, G.: Using Decision Trees for Agent Modeling: Improving Pre-
diction Performance. User Modeling and User-Adapted Interaction 8 (1/2) (1998)
131-152.

5. Grabtree, I. and Soltysiak, S.: Identifying and Tracking Changing Interests. Interna-
tional Journal of Digital Libraries vol. 2 (1998) 38-53.

6. Harries, M. and Sammut, C. Extracting Hidden Context. Machine Learning 32 (1998)
101-126.

7. Klingenberg, R. and Renz, I.: Adaptive information filtering: learning in the presence
of concept drift. AAAI/ICML-98 Workshop on Learning for Text Categorization, TR
WS-98-05, Madison, WI, (1998).

8. Kobsa, A., Koenemann, J. and Pohl, W.: Personalized Hypermedia Presentation
Techniques for Improving Online Customer Relationships. The Knowledge Engi-
neering Review, 16(2) (2001) 111-155.

9. Koychev, I. and Schwab, I.: Adaptation to Drifting User's Intersects - Proceedings
ECML2000/MLnet workshop: ML in the New Information Age, Barcelona, Spain,
(2000) pp. 39-45.

10. Maloof, M. and Michalski, R.: Selecting examples for partial memory learning. Ma-
chine Learning 41 (2000) 27-52.

11. Mitchell, T., Caruana, R., Freitag, D., McDermott, J. and Zabowski, D.: Experience
with a Learning Personal Assistant. Communications of the ACM 37(7) (1994) 81-
91.

12. Quinlan, R.: Induction of Decision Trees. Machine Learning 1 (1986) 81-106.
13. Schlimmer, J. and Granger, R.: Incremental Learning from Noisy Data. Machine

Learning 3, Kluwer Academic Publishers (1986), 317-357.
14. Webb, G. and Kuzmycz, M.: Feature-based modelling: a methodology for producing

coherent, consistent, dynamically changing models of agents' competencies. User
Modeling and User-Adapted Interaction 5(2) (1996) 117-150.

15. Webb, G. Pazzani, M. and Billsus, D. Machine Learning for user modeling. User
Modeling and User-Adaptive Interaction 11 (2001) 19-29.

16. Widmer, G.: Tracking Changes through Meta-Learning. Machine Learning 27 (1997)
256-286.

17. Widmer, G. and Kubat, M.: Learning in the presence of concept drift and hidden con-
texts: Machine Learning 23 (1996) 69-101.

