

Design and Implementation of a Logo-based
Computer Graphics Course
Pavel Boytchev, boytchev@fmi.uni-sofia.bg
Dept of Information Technologies, Faculty of Mathematics and Informatics, Sofia University

Abstract
Two years ago the Faculty of Mathematics and Informatics at Sofia University makes a decision
to design a new series of Logo-based courses which make use of the modern technology. The
pedagogical component of the challenge is to design a multidisciplinary course suitable for
students with different skills and interests. From a development perspective the challenge is to
build an entirely new one. And finally the course must be attractive regardless of the seriousness
and complexity of the topics included in it.

The paper discusses the structure of the course including the final weeks when topics emerging
from students’ course projects are taught. Each lesson from the course is based on sets of
sample programs representing the general lifecycle of software development. This includes
designing, coding and debugging. Samples are created on-the-fly, thus different instances of the
course results in different final projects. Lessons are interactive and students may interfere with
the direction of demonstrated software development.

Three lessons from the course are sketched in the paper. The first one is taught in week 4 and
spans over Computer Science, Calculus, Analytical Geometry; and Applied Statistics and
Probability. The lesson in week 6 is focused on composition of complex movements and their
synchronization. It uses elements from Computer Science, Geometry, Physics, and
Trigonometrics. The third lesson is about relative transformational geometry and its application
in the form of Turtle Graphics. It uses elements from Physics, Robotics, Biology and Art.
Snapshots from the projects are shown in Figure 1.

Figure 1 Snapshots of projects developed through the course

A few of the students’ course projects are also presented in the paper – an animated 3D model
of the Solar system, a transformational geometry impression called “United Colours of Elica”,
and a 3D model of the Faculty building.

The presented Logo-based Computer Graphics course ‘conquers’ educational territories from
the dominating C and C++. It is taught since 2005 and is well accepted by students. They find it
both interesting and useful for their education. The future of the course is very promising. A
textbook is planned, as well as extension of the teacher-student interaction beyond the time
frame of the course.

Keywords
Logo; Computer Graphics; course; Elica

 1

 Pavel Boytchev

Preface
The Logo programming language has been traditionally used in the classroom to describe, to
explain and to explore the fundamental principles of Computer Science. The properties of this
language make it an advantageous choice for a first programming language. It is not only the
simplicity of the syntax that makes it beneficial to students, to their teachers and to the overall
learning process. Another factor is the immediate access to drawing functionality via Turtle
Graphics. The widespread use of Turtle Graphics is a unique phenomenon which has some
negative effect on the public opinion about Logo. Namely, Logo might be considered as just a
system for doing graphics with a turtle. The opposite opinion is also still widespread – some
turtle graphics environments and libraries are considered to be Logo.

The postponed negative effect of these opinions is that some teachers and parents think of Logo
as of a childish language, not appropriate for doing serious stuff. Apparently what is considered
as serious, is merely everything which has direct positive impact on entry and exit exam.

The Faculty of Mathematics and Informatics at Sofia University, has been using Logo for some
decades in various courses – from teacher training courses to e-Learning and Technology
Enhanced Learning (TEL) courses (Nikolova and Sendova, 1995). The faculty members were
not only using Logo in their classes, but also they were developing new Logo versions. The first
one being Plane Geometry System, later renamed to Geomland, released more than 20 years
ago, to the latest Elica Logo, which is still under active development (Elica, 2007).

The Challenge
In the spring of 2005 the Department of Information Technology makes a decision to provide
greater support to the development of Logo, as well as to revive its use in the courses. Thus the
main challenge is formulated as to design and implement a new series of Logo-based courses
which make use of the modern technological achievements.

Pedagogical challenges
The creation of a new stream of courses would have greater academical value if it is adaptable
to the specific needs of the teacher and the course. For example, the Logo-based Computer
Graphics course could be taught to Bachelors and to Master’s programmes. It could be taught to
students in Informatics, Mathematics, Applied mathematics, Mechanics, etc. Many of the
students attending the courses are supposed to be familiar with some of the basic concepts of
computer science – algorithms, procedural and functional programming, OOP, etc. However, the
courses should be accessible to students which have no significant (or in some cases any)
experience in these areas either because they are freshmen, or their specialty does not require
the full extend of the programming skills. Examples of such students are those who are studying
for becoming teachers in Mathematics or Informatics (Vitukhnovskaya, 2005).

The initiative for designing new courses clearly stated that they should cover all previous
courses, so the educational plan of the Faculty is not invalidated. Additionally, the courses
should provide enough complexity and robustness so that new students from other programs
could also join. For example students from the Computer Graphics Master’s Programme are also
supposed to visit these courses.

Development challenges
The Logo implementations used by the Faculty in the past are getting more outdated, and the
new versions of these implementations are not available due to various reasons. This poses the
challenge what programming environment to use for the courses (Laucius, 2006). It is decided
to use Elica Logo as a software backbone for the course and to design new courses based on
the advanced features of this Logo dialect (Boytchev, 2005). Switching to a new Logo dialect
with a wider but different range of features makes most of the already existing teaching materials
obsolete. The design of new courseware would lead to major changes in the lessons’ content

2

Design and Implementation of a Logo-based Computer Graphics Course

and will affect the actual teaching procedures. This poses a unique challenge as to how to
design and implement new courses in a way that the overall advantage is much bigger than the
overall disadvantage.

Psychological challenges
Charm is one of the most undervalued factors for modern courses. Teaching Computer Science
and Computer Graphics at university level is treated as a serious endeavor. The matter is heavy,
sophisticated and knotty. Whether it is attractive to students or not is not as important as the
content of the course. The new courses which are to be developed need this charm in order to
win students’ hearts. Initially the courses start as selective, so it is important to design the course
in such a way that students are willing to enroll not only to gain some credits, but to learn
something useful. The so called Nintendo generation (West, 1995) poses new requirements for
courses, especially those related to computer graphics. Providing adequate level of charm is
essential factor to meet these requirements.

Course structure
A typical course spans over 15 academic weeks and includes 30 lecture hours plus 30-60 lab
hours. Traditionally students are evaluated several times during a course and eventually they
have an exam, which comprises the biggest part of their final score. The final exam usually has
two components – practical and theoretical.

The Logo-based courses could follow the same settled structure, but instead, it is decided that
the way to measure student’s efforts, knowledge and imagination is to provoke their creativity in
the creation of a Logo-based course projects. As a result there is no examination synopsis of
Elica, and students are focused on their projects long before the examination session.

Introductory section
The course is divided into three sections – see Figure 2. The first section takes three weeks (i.e.
6 academic hours). It is dedicated to the introduction of Logo and Elica. During the first week,
while students get accustomed to Elica, they learn the basics of the Logo language, including
data types, all reserved words and some functions for words and lists processing.

Introduction

 3

Figure 2 Course sections – weekly structure

The second week is left for iteration, recursion and custom operators. The third introductory
week is dedicated to OOP features of Elica. Students learn various methods for class definition,
object using and manipulation of OOP entities.

The core section
The core part of the course takes roughly 8 weeks and covers topics directly related to computer
graphics, 3D modeling and animation. The lessons also utilize implicitly knowledge from the
conventional computer science subjects, like algorithms and optimizations. It is not possible to
make a precise topic-week relationship, because the course is continuously adapting itself to the
level of the students. Follows a list of the basic topics in the core section:

• 1D/2D objects: points, lines, segments, rays, circles, ellipses, squares, rectangles.

• 3D objects: cubes, parallelograms, spheres, cones, cylinders, spline surfaces.

• 3D spaces: coordinate systems, transformations (translation, scaling, rotation).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Core section Advanced section

 Pavel Boytchev

• Custom user-defined objects, custom methods for object rendering, support for nested
graphical objects, local transformations.

• Color, RGB color space, lighting, object materials, fog effects, textures.

• Turtle graphics in 3D space, hierarchical joint models, creating complex android models.

• View points, flying through space, perspective and orthogonal projections.

• Animation, smooth movement, techniques for achieving realism – resistance, inertia.
Simulation of physical movements, composition of various movements.

• Building graphical user interfaces, event handlers, capturing mouse activity, responding
to user interaction, building interactive environments.

Advanced section
The last few weeks of the course are left for topics which are not taught during the basic course,
but are related to the course projects selected by the students. During the second half of the
core section students determine the topic of their projects. If the projects use specific objects or
techniques, then they are included in the advanced section.

As a result of this layout, the advanced sections for different semesters are always different.
They depend entirely on what students chose to do. Here are some examples of advanced
topics:

• Simulation of water waves.

• Run-time modification of classes and objects.

• Building Logo libraries and software packages.

The exam
About the middle of the course, weeks 8 to 10, students are encouraged to propose their
projects. If accepted they can start working on them immediately. Some proposals might not be
accepted either because they are too complex or are too easy. Complex proposal are simplified
to a level which will make them doable in a reasonable period of time. Projects that are too
simple or too easy to implement in Elica are loaded with some extra features.

Students may request additional information about issues related to their projects. In this way
they determine the topics for the third section of the course (Stoyanova, 1999). When they think
they are ready with the projects they submit them electronically for evaluation. If submission is
done in advance, students get reply with the current rating and suggestions how to improve it. If
students have time and are willing to get a higher rating they can adjust their projects and
resubmit them. This project-evaluation scheme is repeated several times.

For the last 4 semesters this scheme proves to be successful for students. Most students
resubmit their projects twice. Very few of them send three or four versions. The possibility to
have their projects reviewed and resubmitted makes students more comfortable with the course
and lets them display their creativity and imagination.

Class structure
The structure of each individual class is a small copy of the whole course structure. It starts with
an easy to understand basic concepts, and then it goes to details and advanced ideas, and ends
with explanations-responses to students’ questions.

Classes are extremely interactive. The topic is presented as series of programs which are typed
and executed in real time. The image from the teacher’s computer is projected on a big screen
and students can follow the process of programming from the beginning to the end.

4

Design and Implementation of a Logo-based Computer Graphics Course

 5

Usually the first sample program is just few lines long. Next samples just add some features to it
thus building more complex programs. One of the co-ideas of the course is to demonstrate the
process of real-world programming. The selected technique of erecting a full-functional program
from scratch is a perfect live scenario for students (Dagienė, 1999).

One of the most enjoyable by the students moments is when the program does not behave
correctly. Such situations are handled by on-the-fly debugging and modification of the code. The
teacher’s thinking is vocalized and projected on the screen without interruptions, so students
learn various techniques to resolve bugs.

Quite often students are asked to provide ideas how to solve a problem. Most of the cases they
suggest interesting solutions which are immediately tested. There are also cases when the
suggestions do not solve the problem. Such ideas are also tested, because they are an excellent
opportunity to practice important problem-solving and pitfall-avoiding skills.

All samples during each class are archived and provided to the students, so they can replay the
whole lesson, and do further explorations with the code. Some are getting the sources right after
the lesson; others are downloading them from an online repository (Elica Repository, 2007). At
the beginning of the course many students use a paper notebook where they try to copy by hand
all sample programs. However they soon find that it is impossible to cope with the dynamics of a
live coding. The sample programs are constantly changing while testing different ideas and
debugging, so students realize that it is much more valuable to grasp the ideas and the
techniques, rather then to memorize the exact programs.

The selected structure of the classes is well accepted by students. However, it imposes
additional requirements for the teacher. The most obvious one is that it is unavoidable to write
only correct programs. A single class may have 20 to 30 program samples, and each of them is
a potentially dangerous place for the teacher to make a mistake. Some of the mistakes are
intentional, but others are not. The latter makes teaching very demanding, because the teacher
should extract educational value not only from good examples, but also from bad. On the other
hand unintentional errors place the teacher in a stress situation, because s/he has to provide a
solution with an adequate reasoning in a limited time frame.

Multidisciplinarity
Each lesson from the course has a main topic about features and techniques from the area of
programming with Elica. Additionally, each lesson is enriched with many smaller fragments from
other subjects, mainly from Mathematics and Physics. Some lessons ‘rent’ ideas from Biology,
Psychology, Astronomy, Geography, Statistics and even Arts. Multidisciplinarity1 is an intentional
feature of the course which makes classes more interesting and demonstrates the application of
software in various scientific and artistic domains (Sendova, 2006). To demonstrate the
multidisciplinarity of the lessons, three of them are briefly described below.

Points (week 4)
The first graphical lesson is scheduled for week 4 of the course. It starts with the introduction of
the most primitive graphical object in Elica – the point. A point is defined by 3 numbers which
stand for its coordinates. The initial examples used in this lesson are used to describe how the
graphical system is initialized, how to visualize the coordinate system, and how to create a point
at some position. During the lesson the students face a short challenge – to create 1000 random
points within a virtual cube. The second challenge is more complex: to create the points in a
sphere, not in a cube – Figure 3. Some of the students do not know how to do this, others
suggest using the formula of a sphere x2+y2+z2=r2.

1 Although the course uses elements from other subjects the main focus is always on the graphics with
Logo. Topics from non-programming subjects are used mainly to give ideas for projects and to illustrate
the interconnection of sciences.

 Pavel Boytchev

The most often suggested solution is to create random points in a cube, but keep only those
which are internal to the sphere. This is one of the milestones in the lesson, because students
realize that the created points are less than 1000.

Figure 3 Random points in a cube and in a sphere

The lesson continues in the direction of how to fix this. Several solutions are suggested and
tested. One of them is to keep track of the number of internal points and terminate the loop when
1000 is reached. Another solution is to check for validity before the creation of a point.
Throughout a series of tests and modifications students learn to be doubtful about a program
that looks correct.

Once they calm down thinking they’ve done all possible solutions, they are asked to find a way
to directly create a point inside the sphere without the need to test for inclusion. Some students
try to give up, others test teacher’s sense of humor by making all the points at (0, 0, 0). With help
from the teacher students find two more solutions – one based on Cartesian coordinates, and
another based on polar coordinates.

At the end of the lesson students are directed back to the wrong solution of 1000 points in a
cube some of which are also in a sphere. This wrong solution serves as a basis to solve a new
problem – how to find the approximate value of π exploiting the bug in the program. It takes
some time to conclude that the number of points in the sphere and in the cube depends on the
ratio of the sphere’s and cube’s volumes which is π/6. Table 1 shows the approximate values for
π calculated for cases with 10, 100, 1000, and 10000 points.

 10 100 1000 10000
Test 1 1.8 3.12 3.22 3.15
Test 2 3.0 3.66 3.05 3.16
Test 3 2.4 2.82 3.23 3.09

Table 1 Calculated approximation of π

This first graphical lesson spans over a few subjects studied in the faculty. Students learn some
basic concepts from Computer Science (various loops, conditional execution, counters),
Calculus (function composition), Analytical Geometry (Cartesian and polar coordinates,
equations for cubes and spheres, volumes); and finally – Applied Statistics and Probability.

Bouncing balls (week 6)
The bouncing balls lesson is taught at week 6. It is the first time students learn how to simulate
physical properties of objects through their movement. The final goal of the lesson is to show
how to make two balls bouncing on a flexible plate – Figure 4. The balls have different bounce

6

Design and Implementation of a Logo-based Computer Graphics Course

periods. The plate starts to vibrate whenever it is hit by any of the balls. The vibration gradually
fades if no hit is encountered for some time. Both balls have shadows cased on the plate. While
balls go away from the plate, shadows become smaller and lighter.

Figure 4 Bouncing balls

The series of programs in this lesson starts with the simple case of a ball going linearly up and
down. Students realize immediately that such movement is not visually acceptable because it is
physically incorrect. The next step is to replace the linear movement with sine function2. Now the
movement of the balls near their highest positions is acceptable, but they do not bounce off
sharply from the plate. This gives the clue to use the absolute value of sine – Figure 5.

Figure 5 Linear, sine and absolute-sine bouncing

By using |sin| students learn that very often physical movements in an animation are not based
on the physically correct formulae. Because of performance issues some calculations are
replaced by faster one. That is why |sin| can effectively replace the calculation of a parabola.

Sine is heavily used throughout the whole lesson. It is ‘responsible’ not only for the bounce, but
for another 3 actions – the vibration of the plate based on variation of sin(x)/x, the rotation of the
plate which smoothly alternates between clockwise and counter-clockwise, and the flying of the
view point around the scene.

An interesting problem with the bouncing balls is the synchronization of various movements. The
bouncing of the balls is independent on the vibration of the plate. The program must explicitly
synchronize both motions in order to trick the viewer to think that vibration is caused by the hit.

The “Bouncing balls” lesson is another example of a multidisciplinarity. It practices skills in
several subjects – Computer Science, Geometry, Physics, and Trigonometrics.

2 By describing the properties of the bouncing the students are asked to think of a function with similar
properties. Some students come up with the idea of sine or cosine quite quickly, others need more hints.

 7

 Pavel Boytchev

Relative Transformational Geometry and Turtle graphics (week 8 and 9)
Transformational Geometry deals with affine transformation of objects. It is heavily used in many
Elica lessons, because the original shapes of all objects are the canonical solids (like cube
1x1x1, or sphere with radius 1). All other objects are generated by transforming the canonicals.
Relativity in geometry is when each object has its local coordinate system, and other objects
bound to it are defined in terms of its local system.

The usage of relative transformational geometry is based on transformational matrices. One
interesting application is how to stack transformations for chained objects. Because of the
flexible structure of each lesson, the same lesson taught in two different years are different. The
main topic is the same, but the set of samples and especially the final programs becomes quite
different. For example, “Dandelions” from Figure 6 are the final program of the lesson from
December 2005, while “Octopus” is from the same lesson two semesters later.

Figure 6 “Dandelions” (left), “Octopus” (middle), and “Lernaean Pentapus” (right)

“Octopus” gives birth to other program which is included in the Online Elica Museum (Elica
Museum, 2007). The third image in Figure 6 is a snapshot from “Larnaean Pentapus” exhibit
from the museum. Using Relative Transformational Geometry prepares students to accept easily
the benefits of Turtle Graphics. Relativity is the nature of turtle’s motion and thus it has common
grounds with Differential Geometry.

Figure 7 Houses created by turtle crawling on the surface of a cube and a sphere.

The first 5-10 programs in the lesson are used for introduction to 2D and 3D turtle graphics. A
typical example of this introduction is to make a turtle crawl on the surface of a cube and build
various objects on each face, or to crawl on a sphere – see Figure 7.

8

Design and Implementation of a Logo-based Computer Graphics Course

The more advanced usage of Turtle Graphics is to create the objects drawn earlier with relative
transformational geometry, but this time using turtles. Students see how the reimplementation
becomes shorter and easier to understand, because turtles and relative transformations have a
common mathematical background. The rest of the lesson is dedicated to step-by-step building
and animation of a humanoid body – legs, hands, torso, and head, traversed by an invisible
turtle. The animation is done by synchronous changes in the joints – every joint has a local
coordinate system and is a place where the body parts have some level of motion freedom.

Figure 8 Four phases of humanoid building (left) and the “Circus Dancer” (right)

Most often the created body is of a dancer playing with a hoop – Figure 8. The right-most image
is from the “Circus Dancer” exhibition form the Online Elica Museum.

This lesson teaches students how to program more complex systems. It makes use of various
elements from Physics, Robotics, Biology, and Arts.

Course projects show-cases
The Online Elica Museum is a section from the Elica site containing a collection of Elica
programs, mostly related to animation of 3D objects. The programs are freely available as
source code for everyone. Some of the course projects developed by students are so successful
that they are included in the museum as independent exhibits. Of course, the original source
code is polished to make it more representative and clearer, so that other students can learn
from it. This section of the paper presents snapshots of several students’ course projects – some
are published in the museum, others are not.

Figure 9 Project "Solar System"

The project “Solar System” creates the Sun and the planets as 3D objects, and then animates
the system by rotating the planets around the Sun – Figure 9. Each planet is dressed in a texture

 9

 Pavel Boytchev

taken from real astronomical images. Some details are added to make the animation more
realistic – there are stars at the background, the planets spin around their axes too, Saturn and
Uranus have semitransparent rings, and the Moon rotates around the Earth. The making of this
project requires understanding of how textures are used and some math skill to define the orbits
and spinning of the planets as well as composition of several non-linear movements.

The second project – see Figure 10 – is named by the student who wrote it “United Colours of
Elica”. It features a series of animations of cube transformation. Each face of the cube is
implemented as a spline surface which control points are defined by an invisible 3D turtle.

Figure 10 Project “United Colours of Elica’

Another student’s project is to make a virtual 3D building of the Faculty of Mathematics and
Informatics. A snapshot of this building is shown in Figure 11.

Figure 11 Project "The Building of Faculty of Mathematics and Informatics"

Conclusion
Logo is used in primary and secondary school curricula, but it can be used in various courses at
a university level too. This applies not only for light-weight courses, but also to traditionally heavy
subjects like Computer Graphics where C and C++ are dominant programming languages. The
course described here has been active for 4 semesters. The number of enrolled students is
getting bigger, popularity rises. Anonymous questionnaires show that students definitely prefer
interactive lessons. One of the most liked features is the life demonstration of programming
which includes both coding and debugging. The project-based scenario of each lesson serves
as a prototype of the lifecycle of a typical software development.

10

Design and Implementation of a Logo-based Computer Graphics Course

 11

Another feature of the course admired by students is the possibility to unfold their imagination by
working on a course project related to their personal interests. Multidisciplinarity builds bridges
between programming and the highly varies skills of students – although they come from
different specialities, they learn something new and interesting. The way how the topics in the
course are designed, especially the custom-defined ones during the last few weeks, is a thing
which helps student build awareness of and confidence in their own skills. This is due to the fact
the students feel the course as if it is personally oriented towards them.

The future of the Logo-based course is very promising. There are several ideas for its further
development. One of them is the writing of a textbook, which is a challenge of its own, because
of the dynamism of the course topics. The first step is to collect enough variations for each topic.

Another idea is to move the Elica Repository to a more interactive online system – Moodle. This
will add many new possibilities for student-teacher off-lesson interaction.

Since January 1, 2007, Bulgaria joined European Union. This had a significant impact on the
educational system. Many Universities are now revising their Programmes because of expected
increase of foreign students. One of the possible future plans of the Logo-based Computer
Graphics course is to offer it to English-speaking audience.

References
Laucius, R. (2006) Issues of Selecting a Programming Environment or a Programming
Curriculum in General Education. ISSEP 2006, LNCS 4226, Springer-Verlag Berlin Heidelberg
2006, pp. 169-178.

Sendova, E. (2006) Handling the Diversity of Learners' Interests by Putting Informatics Content
in Various Contexts. ISSEP 2006, LNCS 4226, Springer-Verlag Berlin Heidelberg 2006, pp. 71-
82.

Boytchev, P. (2005) Using Logo to Model and Animate. In Proceedings of Eurologo 2005. Edited
by Gr. Gregorczyk et al, August, pp 66-75.

Vitukhnovskaya, A. (2005) Logo for the Would-be Teachers of the Computer Science
Elementary Course. In Proceedings of Eurologo 2005. Edited by Gr. Gregorczyk et al, August,
pp 245-256.

Dagienė, V. (1999) Logo and Changes in Learning: Project-based Methodology. In Proceedings
of Eurologo 1999. Edited by R. Nikolov et al, August, pp 179-186.

Stoyanova, N. (1999) The Students - Authors of Tasks. In Proceedings of Eurologo 1999. Edited
by R. Nikolov et al, August, pp 334-339.

Nikolova, I. and Sendova E (1995) Logo in the Curriculum for Future Teachers: A Project-Based
Approach. In Proceedings of Eurologo 1995. Edited by M. Dúill, July, pp 7-12.

West, I. (1995) Logo: Forward 1 to Freedom. In Proceedings of Eurologo 1995. Edited by M.
Dúill, July, pp 87-92.

Online References
Elica (2007), Elica Home Page, http://www.elica.net

Elica Museum (2007), Elica Online Museum, http://www.elica.net/site/museum/museum.html

Elica Repository (2007), Elica Samples Repository, http://www.fmi.uni-sofia.bg/Members/
boytchev/elika/

http://www.elica.net/
http://www.elica.net/site/museum/museum.html
http://www.fmi.uni-sofia.bg/Members/%0Bboytchev/elika/
http://www.fmi.uni-sofia.bg/Members/%0Bboytchev/elika/

	Design and Implementation of a Logo-based Computer Graphics Course
	Preface
	The Challenge
	Pedagogical challenges
	Development challenges
	Psychological challenges

	Course structure
	Introductory section
	The core section
	Advanced section
	The exam

	Class structure
	Multidisciplinarity
	Points (week 4)
	Bouncing balls (week 6)
	Relative Transformational Geometry and Turtle graphics (week 8 and 9)

	Course projects show-cases
	Conclusion
	References
	Online References

