Tracking Drifting Concepts by Time Window
Optimisation

Ivan K oychev! Robert L othian?

1Department of Information Research
Institute of Mathematics and Informatics, Bulgarfsademy of Science,
Acad. G. Bonchev Street, bl.8, Sofia -1113, Bulgari
i koychev@rat h. bas. bg
23chool of Computing, The Robert Gordon University
St Andrew Street, Aberdeen AB25 1HG, UK
rm @onp. rgu. ac. uk

Abstract. This paper addresses the task of learning comtesatriptions from
streams of data. As new data are obtained the pbmescription has to be
updated regularly to include the new data. In thise we can face the problem
that the concept changes over time. Hence the aild bdecome irrelevant to
the current concept and have to be removed fromtrdiring dataset. This
problem is known in the area of machine learningaept drift. We develop
a mechanism that tracks changing concepts usinadaptive time window.
The method uses a significance test to detect pprbédt and then optimizes
the size of the time window, aiming to maximise thessification accuracy on
recent data. The method presented is general imenand can be used with
any learning algorithm. The method is tested witte¢ standard learning al-
gorithms (kNN, ID3 and NBC). Three datasets havenbesed in these ex-
periments. The experimental results provide evidahat the suggested for-
getting mechanism is able significantly to imprgweedictive accuracy on
changing concepts.

1 Introduction

Many machine learning applications employ algorishfor learning concept de-
scriptions. Usually, as time passes, new examplesobtained and added to the
training dataset. Then the concept descriptionpdated to take into account the
new examples. These applications often face thielgmrothat real life concepts tend
to change over time, i.e. a concept descriptiomks@ on all previous examples is no
longer up-to-date. Hence, some of the old obsematihat are out-of-date have to be
‘forgotten’. This problem is known aoncept driftf16]. A prominent example of a
system that should adapt to changing conceptssigstem that helps users to find
pieces of information in which they are likely te interested. These systems use
machine learningnethods to acquire from observations a model of sigaterests.
However, user’s interests and preferences arenextlto change over time (e.g. [7],



[12] and [13]). Such systems are usually providéth wnechanisms that are able to
track changing user interests.

There are two important questions that have toduresmsed in case of concept
drift. The first one ishow to detect a change in the con&fitthere is no back-
ground information about the process, we can useégerease in predictive accuracy
of the learned classifier as an indicator of charigehe concept. Usually the devel-
oped detection mechanism uses a predefined thoeshibbred for the particular
dataset (e.g. [18]). However the underlying conoapt change with different speeds
i.e. some times it can kabrupt other times it can be rathgradual The detection
mechanism often has difficulty in detecting botpety of changes i.e. if the threshold
is very sensitive it can mistake noise for conaiit or if it is not sensitive enough
it can take too long to discover a gradual drifecénhtly some authors suggested the
use of a statistical hypothesis test to detecthtamges (e.g. [4] and [9]).

The second important questionhiew to adapt if a change is detectdd?some
applications a fixed size time window optimised tloe particular application is used
(e.g. [13]). This solution is fast and easy to iempént, but it requires a preliminary
investigation of the domain to select the windomesiMoreover if the type and fre-
guency of the changes in the concept are unprétictacan lead to a decrease in
the classification accuracy. Other approaches eseidtics to decrease the size of
the time window when changes in the concept arectid (e.g. [4] and [18]).

The next section gives a short overview of theteelavork. A novel mechanism
that addresses both questions for dealing withctimeept drift problem is presented
in section 3. It uses a statistical significancs te detect concept drift. Then it em-
ploys an efficient optimisation algorithm to addpé size of the time window. Ex-
periments with one artificial and two real datasetsreported in section 4.

2 Related Work

Different approaches have been developed to trhakging (also known as shift-
ing, drifting or evolving) concepts. Typically isiassumed that if the concept
changes, then the old examples become irrelevahetourrent period. The concept
descriptions are learned from a set of recent elesngalled a time window. For
example, Mitchell et al. [13] developed a softwassistant for scheduling meetings,
which employs machine learning to acquire assumptiebout individual habits of
arranging meetings, uses a time window to adapérfas the changing preferences
of the user. Widmer and Kubat [18] developed thst fapproach that uses adaptive
window size. The algorithm monitors the learninggass and if the performance
drops under a predefined threshold it uses hecsisti adapt the time window size
dynamically. Maloof and Michalski [12] have devetoba method for selecting
training examples for a partial memory learningtesys The method uses a time-
based function to provide each instance with an Bgamples that are older than a
certain age are removed from the partial memoryameet al. [3] employ a case
base editing approach that removes noise casesthgeases that contribute to the
classification incorrectly are removed) to dealhwibncept drift in a spam filtering



system. The approach is very promising, but is iagple for lazy learning algo-
rithms only. To manage the problems with gradualcept drift and noisy data, the
approach in [11] suggests the use of three windavamall (with fixed size), a me-
dium and a large (dynamically adapted by simplerisgcs). The approach pre-
sented in this paper also addresses those prohbyrascarefully designed statistical
test and uses an efficient optimal algorithm indte& heuristics to adapt dynami-
cally the time window size.

The above approaches totally forget the examplasate outside the given win-
dow, or older than a certain age. The examplesiwtemain in the partial memory
are equally important for the learning algorithmhkis is an abrupt forgetting of old
examples, which probably does not reflect theiheatgradual aging. To deal with
this problem it was suggested to weight trainingregles in the time window ac-
cording to their appearance over time [6]. Thesgis make recent examples more
important than older ones, essentially causingsystem to gradually forget old
examples. This approach has been explored furthé8]iand [9]. The mechanism
presented in this paper is also based on the timgow idea, but it seeks to improve
the performance by dynamically optimising the timmdow size. It seems that
gradual forgetting can compliment quite well theeai window approach, but we
choose to focus on exploring the pure approachisgaper.

Some systems use different approaches to avoidbfasseful knowledge learned
from old examples. The CAP system [13] keeps oldsrias long as they are com-
petitive with the new ones. The architecture of Fh®RA system [18], assumes that
the learner maintains a store of concept descripti@levant to previous contexts.
When the learner suspects a context change, itewéimine the potential of previ-
ously stored descriptions to provide better classgibn. The approach presented in
[7] employs a two-level schema to deal with dridtiand recurring concepts. On the
first level the system learns a classifier from thest recent observations assuming
that it is able to provide description of the cutreontext. The learned classifier is
accurate enough to be able to distinguish the @aisbdes that are relevant to the
current context. Then the algorithm constructs & training set, ‘remembers’ rele-
vant examples and ‘forgets’ irrelevant ones. Thpraach presented in this paper,
does not assume that old examples or models caatitieved, because this can be
very time consuming and memory intensive.

Widmer [17] assumes that the domain provides eitpllaes to the current con-
text (e.g. attributes with characteristic values)two-level learning algorithm is
presented that effectively adjusts to changing existby trying to detect (via meta-
learning) contextual clues and using this inforwmatio focus the learning process.
Another two-level learning algorithm assumes thaicepts are likely to be stable
for some period of time [5]. This approach usegidtarning and contextual clus-
tering to detect stable concepts and to extraatdmccontext. The mechanism in this
paper does not assume that the domain provides slreg that can be discovered
using a meta-learning level. It rather aims totetbest performance using a single
learning level.

An adaptive boosting method based on dynamic samgighting is presented in
[9]. The approach uses statistical hypothesisrtgsth detect concept changes. Gama



et al., [4] also use a hypothesis testing procedsirailar to that used in control
charts, to detect the concept drift, calculatingatinof the data so far. The mecha-
nism gives a warning at 2 standard deviations @pprately 95%) and then takes
action at 3 standard deviations (approximately @.7f the action level is reached
then the start of the window is reset to the paihiwvhich the warning level was
reached. However, for this mechanism, it can tali¢ega long time to react to
changes and the examples that belong to the oldeporare not always completely
useless, especially when the concept drift is ragihadual. The approach presented
in this paper also uses a statistical test to tetmucept changes, but some limita-
tions of the plain test are addressed by a momfidaselection of the test population.
If a concept description is detected then the meishauses a fast optimisation algo-
rithm, to find out the optimal size of the windohat achieves the maximum accu-
racy of classification.

3 A Schemefor Tracking Drifting Concepts

Let us consider a sequence of examples. Each egaimpllassified according to
underlying criteria into one of a set of classesiclv forms the training set. The task
is to learn a classifier that can be used to diaisé next examples in the sequence.
However, the underlying criteria can subsequertthnge and the same example can
be classified differently according to the timeitsf appearance, i.e. a concept drift
takes place. As we discussed above to deal withpgtablem machine learning sys-
tems often use a time window i.e. the classifienas learned on all examples, but
only on a subset of recent examples. This sectitioduces an approach for learning
up-to-date descriptions of drifting concept basedttus idea. It addresses the two
major tasks involved in dealing with drifting copte by suggesting an effective
mechanism for detecting the concept drift anddfi& is detected optimises the size
of the time window to gain maximum accuracy of pcgdn.

3.1 Detecting the Concept Drift

To detect concept changes the approach monitorgetfiermance of the algorithm.
For the presentation below we choose to observecldmsification accuracy as a
measure of the algorithm performance, but othersomes, such as error rate or
precision could have been used. The presented agprorocess the sequence of
examples on small episodes (a.k.a. batches). Onstap, a new classifier is learned
from the current time window then the average aamyof this classifier is calcu-
lated on the next batch of examples [13]. Thenpttessented approach suggests us-
ing a statistical test to check whether the acquohclassification has significantly
decreased compared with its historical level. Weuaee that the concept has
changed if the current accuracy exceeds the appteptest level for the normal
distribution at the required confidence leveb be precise, if the average prediction



accuracy of the last batch is significantly lessrtlthe average accuracy for the popu-
lation of batches defined on the current time wimdilien a concept drift can be assumed.

As the performance level of the algorithm can Varythe different concepts and
the noise level can also change over the time, w&t warefully select the test popu-
lation for the current time window. We can use Wile window as in [9], but the
predictive accuracy at the beginning of the timedeiw can be low because of previ-
ous concept drift. For example, you can see onrEigun section Experiments, how
the classification accuracy slowly increases adt@oncept drift. Therefore we sug-
gest that the test is done on a sub-window thas doeinclude the first few batches
from the beginning of the time window. Clearly tihichanism will work well when
the concept is shifting i.e. the accuracy is drogpabruptly. In the case where the
changes in the concept are gradual the mechanismidstvork if the significance
test is done on a relatively old population, i.ee@r a few most recent batches are
not included in the test window. Such a test tissisia test population from the core
of the time window will work well for both abruphd gradual drift.

From the central limit theorem, it follows thatwe want to be confident about the
required test level, the test should be supplidobtehes of at least 30 examples. If it
appears that the current batch size is less thahe30the algorithm can easily resize
the batches to satisfy this guidance. In cases evtte data set is expected to be
noisier, then a larger batch size is recommendechuse this will smooth changes
caused by noise.

The confidence level for the significance test $tidae sensitive enough to dis-
cover concept drift as soon as possible, but neobigiake noise for changes in the
concept. The experience from the conducted expatsrehows that the “standard”
confidence level of 95% works very well in all exipeents. This drift detection level
is rather sensitive and it assists the algorithndetect the drift earlier. If a false
concept drift alarm is triggered, it will activatiee window optimising mechanism,
but in practice, this only results in an insigrafit¢ decrease in the time window size.

The presented mechanism works as folldiv&oncept drift is detectetthen the
optimisation of the size of the time window is ganied (see the next sectiaih-
erwise, the time window size is increased to include & examples.

3.2 Optimising the Time Window Size

In general, if the concept is stable, the biggertifaining set is (the time window),
the more accurately the concept description caledmed. However when the con-
cept is changing, a big window will probably comtai lot of old examples, which
will result in a decrease of the classificationuaecy. Hence, the window size should
be decreased to exclude the out-of-date exampleésrathis way to learn a more
accurate classifier. But if the size of the windoecomes too small, it will also lead
to a decrease in accuradye shape of curve that demonstrates the relafjphstween
the size of the time window and the accuracy oftthssification is shown in Figure 1.

To adapt the size of the window according to curoiranges in the concept, Wid-
mer and Kubat [18] pioneer the use of heuristicaweéter, it would be ideal if we



were able to find the optimal size of the windowetosure the best classification
accuracy. The approach presented in [8] tries @bible window sizes and selects
the one with the smallest error rate. This brutedf@ptimization is, of course, inefficient.

The presented mechanism suggests using the Golt#iors algorithm for one-
dimensional optimization [2]. The algorithm looksr fan optimal solution in a
closed and bounded intervdla,b] - in our case the possible window sizes
X =[Xmin+ X.] » Where X, is a predefined minimum size of the window ardis
the current size of the time window. It assumed tha function f (x )is unimodal
on X (i.e. there is only one max*) and it is strictly increasing o(x,,,, x *and
strictly decreasing or(x*, x, ,)which is the shape that can be seen in Figuta 1.
our case the functionf (x xalculates the classification accuracy of the rledr
model using a time window with size.

The basic idea of this algorithm is to minimize thember of function evaluations

by trapping the optimum solution in a set of nestadrvals. On each step the algo-
rithm uses the golden sectiom £ 0.618) to split the interval into three subintervals,

as shown in Figure 1, whedle=b-z(b—-a gndr=a+z(b—a). If f(I)> f(r)
then the new interval chosen for the next stefajs elsg[l,b ] The length of the
interval for the next iteration is(b—a .)Those iterations continue until the interval

containing the maximum reaches a predefined mininsiz®. x* is taken to lie at
the centre of the final interval.

The Golden Section algorithm is a very efficientywa trap thex* that opti-
mizes the functionf (x )After n iterations, the interval is reduced @618 times
its original size. For example i =10, less than 1% of the original interval re-
mains. Note that, due to the properties of the golsection, each iteration requires
only one new function evaluation.

Accuracy

a ) ) r
Window Size b

Fig. 1. A sample shape of the correlation between the evindize and accuracy of the
learned classifier

In conclusion, if we can assume that the classiiobaaccuracy in relation to the
time window is a unimodal function then the goldewtion algorithm can be used as
an efficient way to find the optimal size of then& window. It is possible to find
datasets for which the unimodal assumption is n@¢ & e.g. when the concept



changes very often and abruptly. In such casegaweuse other optimization meth-
ods that do not assume a unimodal distribution,dvewthey are much more expen-
sive in time. The trade-off that we have to tak® iconsideration is to accept that we
can occasionally be trapped in a local maximum, Haie a fast optimization; or

find a global maximum, but have significantly sloveptimization.

4  Experiments

The aim of the experiments reported in this sedsam explore whether the present
forgetting mechanism is able to improve the perfamge of different learning algo-
rithms on drifting concepts.

All experiments were designed to follow the natusaknario of using such
mechanisms [13]. For this reason the data streamase wehunked on epi-
sodes/batched. The algorithm was run on this dettéesatively - on each iteration,
a concept description is learned from the examipléise current time window. Then
the learned classifier is tested on the next batch.

The experiments were conducted with three popelamling algorithms:

— k Nearest Neighbours (kNN) - also known as InstalBased Learning (IBL)
[1]. k=3 was the default setting for the experingergported below except for
experiments with STAGGER dataset, where k=1 wasamobecause it pro-
duces a more accurate classification than k=3;

— Induction of Decision Trees (ID3) [15] (using artridute selection criteria
based on the/? statistics);

— Naive Bayesian Classifier (NBE)4].

The first experiments were conducted with an aidfilearning problem that was
defined and used by Schlimmer and Granger [16}dsting STAGGER, probably
the first concept drift tracking system. Much oé tsubsequent work dedicated to this
problem used this dataset for testing purposes [&lg[4], [5], [6], [7], [12], [17]
and [18]). This allows comparison of our approadthwimilar approaches on this
data set. Those results are presented in the nbsgestion. Experiments also were
conducted with two datasets from the UCI machirsrimg repository which are
presented in subsections 4.2 and 4.3 below.

The results from the conducted experiments areepted in Tables 1, 3, 4 and 5
below. In all these tables, rows present the usaching algorithms: kNN, ID3 and
NBC. The first column shows the predictive accuratyhe algorithms using Full
Memory (FM) learning — all data available up to #herent moment are used for
learning the concept. The second column preseetseasults from the experiments
with Fixed-size Time Window (FTW). The third colunshows the results from the
experiments with the algorithms using this papérime Window Optimisation
(TWO) mechanism. For each data set, the window feizéhe FTW was chosen to
approximate the average time window size obtaimedhe experiments with the

L http://www.ics.uci.edu/~mlearn/MLRepository.html



TWO mechanism on the same dataset. This is extpaftrethe FTW that would not
be available in a real situation where the forthicmmsequence of events is un-
known. The aim here is to allow the FTW approackhow its best performance.

We used the paired t-tests with 95% confidencd leveee whether the presented
approach significantly changes the accuracy ofnledrclassifiers. The pairs are
formed by comparing the algorithms’ accuracieslom ame iteration. In the tables
below, reporting the results from the experimettis, sign * denotes that the TWO
approach achieves a significantly better clasgificaaccuracy than the FM and the
sign ~ - that TWO is significantly better than th€W approach.

4.1 STAGGER problem

The STAGGER problem is defined as follows: Theanse space of a simple blocks
world is described by three attributessze = {small, medium, large}¢olor = {red,
green, blue},and shape = {square, circular, triangular} There is a sequence of
three target concepts: (1)size = small andcolor = red; (2) - color = green or
shape = circular; and (3) -size = (medium or large) 120 training instances are
generated randomly and classified according toctireent concept. The underlying
concept is forced to change after every 40 trairixgmples in the sequence: (1)-(2)-
(3). The setup of the experiments with the STAGGHRaset was done exactly in
the same way us in other similar works. The retrgjrstep is 1, however there is a
test set with size 100, generated randomly andsifiled according to the current
concept. This differs from the other experimentsemehthe retraining step and the
test set are the same - a batch.The size of the BT3dt up to 25, which approxi-
mates the average size of the optimised windows.

emory: FM FTW TWO
Algorithm:
kNN 63.03| 80.47| 86.56*"
ID3 69.05( 83.73[ 89.03*»
NBC 69.97| 82.99| 90.26*"

Table 1. The improvement of the classification accuracy milee TWO mechanism is ap-
plied to the STAGGER dataset

Table 1 shows the results from the experiments thith dataset. In this dataset
we have two abrupt changes in the underlying canaeq the fixed size time win-
dow is able to improve the classification accuraignificantly compared with the
full memory. The TWO mechanism additionally impretle classification accuracy
significantly compared to FTW.

Figure 2 shows a plot of the results from the eixpents with NBC, which illus-
trate the behaviour of the three mechanisms. Itbeaseen from the chart that when
the algorithm uses the TWO mechanism it adaptsifastthe changes.
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Fig. 2. Classification accuracy of the NBC using Full Mewo
Time Window and Time Window Optimisation.

Figure 3 shows the average size of the time winfdowach step in one of the ex-
periments with NBC-TWO. The experiments with ottedgorithms produce very
similar graphs.

As we mentioned above the STAGGER problem was bgeal number of other
systems that deal with concept drift. To compareghesent approach with the pre-
vious approaches, we summarised all available tefidm experiments using this
dataset in Table 2. The first ten rows of this ¢aptesent the results from experi-
ments with other similar approaches. The last thoge present the results from the
experiments with the algorithms using the Time VéiwdOptimisation (TWO)
mechanism. The results are shown in more detdddititate a better comparison of
the systems’ performance on different concepts: (@) and (3), shown in separate
columns. The last column shows the average perfocenan the whole dataset. We
will look more closely at the results from the seg@nd third concepts, where actu-
ally the systems adapt to changes in the underlgamgept. The performance of the
systems on this dataset depends on the basic ngaaigorithms, which seem to
perform differently on this dataset. Therefore wi# mainly be interested in com-
paring the systems that use the same basic leaatgogithm.

The algorithms that use the present TWO mechanisms(11-13) significantly
outperform the first three systems (rows 1 to 3)e Tesults presented in row 4, are

45 4

Window Sze

15

o 40 80 120
Time Steps

Fig. 3. The average window size for each step in the
experiment with NBC-TWO



from the experiments with the COPL mechanism, udiB§ as the basic learning
algorithm. Therefore, we compared it with NBC-TW@hich achieves a signifi-
cantly better performance for this dataset.

The FLORA systems reach significantly higher accyrahan all other ap-
proaches on the first concept, which is actualbtable one. However, NBC-TWO
and ID3-TWO significantly outperform all FLORA sgshs on the concepts (2)-(3),
i.e. after concept drift has occurred. In genekdIN does not perform very well on
this dataset, despite this KNN-TWO significantlytperforms the FLORA2 and
FLORAS3 algorithms on the concepts (2)-(3).

Concept:| (1) 2 3) | V-®

Algorithm: -(3)

1. 1B2[1] 80.4( 51.9| 55.6 63.9
2. AQBL [12] 89.6( 57.2| 55.7 67.0
3. AQPM [12] 89.7| 70.5( 75.1 79.9
4. COPL(NBC)[7] | 91.2] 78.9] 85.9] 853
5. FLORA 2[18] 98.8| 80.4| 80.3 86.5
6. FLORA 3[18] 98.7| 80.7| 79.5 86.0
7. FLORA 4[18] 98.0| 82.5| 82.7 87.7
8. kNN — GF [6] 91.8] 79.5( 83.2 84.8
9. ID3 - GF [6] 93.9] 78.3 89.0 87.07
10. NBC — GF [6] 92.4 83.9| 88.9 88.4
11. kNN — TWO 91.9 81.4| 86.3 86.5
12. ID3 - TWO 93.1] 84.2| 89.8 89.0
13. NBC — TWO 93.9 85.4| 915 90.3

Table 2. Average classification accuracy of systems wittbedded concept drift tracking
mechanisms on the STAGGER dataset

The results reported in rows 8 to 11 are from afgors that use the Gradual For-
getting (GF) mechanism [6]. For this dataset the me#€hanism uses a fixed-size
(30) time window in which the examples are assiggetiually decreasing weights
using a linear forgetting function. We are compgrinVO and GF mechanisms on
pairs that use the same learning algorithm (ewys ®and 12). We can see tliadre
is no difference in average accuracy on the fiosicept. There is a small, but significant
improvement of the accuracy obtained by TWO fordhanged concepts (2)-(3).

4.2 German Credit Dataset

This subsection presents the results from the awpats conducted with the Ger-
man credit dataset, from the UCI machine learniegdRitory. The dataset contains
1000 Instances of bank credit data which are daesdrby 20 attributes. The exam-
ples are classified in two classes as eittgwot’ or “bad’. To simulate hidden

changes in the context the dataset was sorted latebute then this attribute was



removed from the dataset for the experiments. Uam@ttribute to sort the data set
and in this way simulate changing context is a camiynused approach to set up
experiments to study concept drift. Two sorted sletia were created using the Ger-
man credit dataset: The first one was sorted byrgirtuous attribute:dge”, which
would produce a gradual drift of theldss” concept. The second one was sorted by
the attribute thecking_status”which has three discrete values. We aimed in this
way to create abrupt changes of tleéass” concept. The dataset was divided into a
sequence of batches, each of them containing 1 @es. The size of the FTM is
set to 200, which approximates the average sifleeobptimised windows.

Memory:| FM FTW TWO
Algorithm:
kNN 68.25 72.37  77.75*
ID3 77.00 75.50  79.00*
NBC 78.37 75.87 78.63 I

Table 3. The improvement of the classification accuracyewlihe TWO mechanism is ap-
plied to the Credit dataset (sorted“age” attribute).

Table 3 shows the results from the experiments WithCredit dataset (sorted by
“age” attribute). With all algorithms an improvement ilagsification accuracy was
achieved when the algorithms using TWO mechanisre agplied. All these im-
provements are significant except the comparisah WBC-FM.

Table 4 shows the results from the experiments WithCredit dataset (sorted by
“checking_status’attribute). The results show that the TWO mechariimproves
the classification accuracy of the algorithms amese improvements are significant
for all algorithms.

Memory:| FM FTW TWO
Algorithm:
kNN 64.00| 71.7§ 77.13*
ID3 64.87| 71.75 75.25*
NBC 74.37] 74.14 77.76*

Table 4. The improvement of the classification accuracy milee TWO mechanism is ap-
plied to the Credit dataset (sorted lahécking_statusattribute).

The results also show that a fixed time window doesalways provide an im-
provement of the accuracy and can even be desteucbimpared to the full memory
learning algorithm. The problem with it is that we not know in advance how the
concept will change and what will be the best siz¢he future. Even with some
“cheating”, by using a time window approximatingthverage optimal window size
in the experiments with the TWO mechanism, an im@ntent is achieved in only
half of the cases with this dataset.



4.3 Spam dataset

Experiments have also been conducted with the Staaset from the UCI machine
learning Repository. Spam is an unsolicited emaksage. The dataset consists of
4601 instances, 1813 (39.4%) of which are spam agess The dataset is repre-
sented by 54 attributes that represent the occoereha pre-selected set of words in
each of the documents plus three attributes reptiegethe number of capital letters
in the e-mail. To simulate the changing hidden ernthe examples in the dataset
are sorted according to theapital_run_length_total”, which is the total number of
capital letters in the e-mail. This attribute art trelated two attributescépi-
tal_run_length_average’and ‘capital_run_length_longestare removed from the
dataset, because they can provide explicit clueshf® concept changes. The sorted
dataset was divided into a sequence of batchesani#hgth of 10 examples each.

Memory:| FM FTW TWO
Algorithm:
kNN 90.12| 90.10 92.48*
ID3 87.08| 86.56 89.51*
NBC 90.61| 90.7§ 91.56*

Table 5. The improvement of the classification accuracy mvike TWO mechanism is
applied to the Spam dataset, sorteddaypital_run_length_total”attribute (ster 10).

Table 5 presents the results from the experimeiits tive Spam dataset compar-
ing full memory learning, time window with fixedz& and the time window with
optimized size. For this dataset the fixed wind@e svas set to 400 - an approxima-
tion of the average window size for this datasetduy the TWO mechanism. For
this dataset for two of the algorithms (kNN and NB8e fixed time window im-
proves the classification accuracy, but not sigaifitly in either case. For ID3 we
can even see a slight decrease in the accuracimprovement of the classification
accuracy for all algorithms was achieved when theéOrmechanisms were applied
and all those improvements are significant compéodeM and FTW as well.

Figure 4 shows on the same diagram: the classditatccuracy on the test step
(the thin line) and the size of the optimised tim@dow (the thick line) on each
step. It can be seen that a drop in the accuraayaity leads to a decrease of the
time widow size. However, a sudden decrease ircldmssification accuracy does not
always indicate a concept drift, it can be causgddise in the data stream. The
presented algorithm is very robust to such noiserely decreasing the window size
insignificantly, e.g. see the arrow 1 on FigureHbwever, it remains sensitive
enough to detect genuine concept drifts that dser¢le accuracy by a relatively
small value — e.g. see the arrow 2 on Figure 4. dédtection mechanism flags both
real and false concept drifts, but the window sipmizer responds very differently
to the two possibilities.
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Fig. 4. The relationship between the accuracy of predictiieasured on the test set and
the time window size.

5 Concluson

The paper presents a mechanism for dealing withcoimeept drift problem, which
uses a statistical test to detect whether the gtigencept is changing. If a concept
drift is detected, then the mechanism optimizes tthre window size to achieve
maximum accuracy of prediction. The algorithm id-adapting and it can be used
in many datasets without any predefined domain-deépet heuristics or parameter.
Moreover, the developed mechanism is not attached particular learning algo-
rithm. It is general in nature and can be addeghtorelevant algorithm.

The results from experiments with three learningpeathms using three datasets
provide strong evidence that the mechanism is siglgficantly to improve the clas-
sification accuracy on drifting concepts.
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