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Abstract: The current paper presents a brief overview of Inductive logic 
programming (ILP) systems. ILP algorithms are of special interest for machine 
learning, because most of them offer practical methods for extending the 
presentations used in algorithms that solve supervised learning tasks. The paper 
presents major approaches for solving supervised learning task, summarizes their 
features and classifies systems according different dimensions. 
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1. Introduction 
ILP algorithms are of special interest for machine learning, because most of 

them offer practical methods for extending the presentations used in algorithms that 
solve supervised learning tasks. According to languages used for presentation of 
examples, hypotheses and background knowledge (BK) we can separate these 
machine learning algorithms to two major classes: propositional (attribute-value) 
and relational. Relational languages are based on first-order logic and they are more 
expressive than propositional languages, because they allow more compact 
presentation of hypotheses, construction of recursive hypotheses, background 
knowledge usage. Thus relational representation is more convenient than attribute-
value representation for many task domains, including: geography, mutogenesis, 
natural language processing, proteins’ structure analyses, information extraction, 
mesh analyses, robotics, drugs and etc. The paper surveys ILP algorithms, focusing 
on major approaches for solving supervised learning task, summarizes their features 
and classifies systems according different dimensions. 



2. Language Bias 
ILP algorithms usually use one of the following relational languages: 

 general clauses language 
 Horn clauses language 

Construction of the hypothesis in the language frameworks is not always 
possible, because of the following reasons: 

 hypotheses space is huge and/or complex 
 used language is not expressive enough 

To solve this problem are used to types of bias - mechanism employed by a 
learner to constrain the search for hypotheses: 

 language bias - determines the search space itself 
 search bias - determines how the hypothesis space is searched . 

There are two categories language bias 
 the syntactic restrictions of the selected logic formalism; 
 the vocabulary of predicate, function, variables and constant symbols: 

function-free clauses, ground clauses (e.g. without variables), non-
recursive clauses, mode declarations (input/output) of the predicates' 
arguments 

To represent examples, hypotheses and BK in the learning task are used 
examples' language (LE), hypotheses language (LH) and BK language (LB). 

Each of language restrictions mentioned above could be applied to each of 
these languages independently, or to all of them together (Table 1). 

Table 1 

Language bias 

System 

mode declarations 
(input/output) 
types of the 
predicates' 
arguments 

function-
free 

clauses 

ground 
clauses 

ground 
literals 

non-
recursive 
clauses 

Horn 
clauses 

LINUS    LE LH LH 

FOIL LE , LH LE  LB  LH 

MARKUS LE , LB, LH     LH 

FOIDL LE , LH  LE   LH 

GOLEM    LE , LB  LH 

LFP2    LE , LB  LH 

RICH  LE , LB   LB LE , LB, LH 
 
All ILP systems use some language bias. Mode declarations and learning of 

non-recursive clauses are necessary for narrowing search in the hypotheses space, 
but other language restrictions are imposed from the theory. For example, such a 



hypothesis does not exists in general case when both set of examples and BK set 
consists of Horn clauses. 
3. Shift of Bias 

To construct a hypothesis there are also used two types shift of bias:  
 switch to a more expressive language (higher-order rules): 

- second-order schema: CIA [5], WiM [26] learns higher-order rule 
schemas by simply variablizing both the terms and the predicates of 
previously generated Horn clauses; 

- higher-order rule schemas: MODELER [36] keeps to each rule a set 
of its exceptions and this set increases enough generates a new 
predicate; 

- lambda-calculus:LILP (Lambda Inductive Logic Programming) [16]. 
 extend the given vocabulary by new predicates – predicate invention: 

MODELER [36], RINCON[35], CHILLIN[38], CIGOL[19], RICH[39]. 
Bias shift is used to construct more compact hypothesis, but usually the 

hypotheses space increases. 

4. Characteristics of ILP systems 
Incremental/ Non-incremental: This dimension describes the way the 

evidence (examples) is obtained. In non-incremental or empirical ILP, the evidence 
is given at the start and not changed afterwards, in incremental ILP, the examples 
are input one by one by the user, in a piecewise fashion. Non-incremental systems 
search typically either specific-to-general or general-to-specific. Incremental 
systems usually employ a mixture of these strategies as they may need to correct 
earlier induced hypotheses. Incremental ILP systems include: FORTE [29], LFP2 
[34], MARVIN[32], RINCON [35] и CIGOL [19]. Empirical ILP systems include: 
GOLEM [20], FOIL [27], FOCL [22], МFOIL [6], ILP-R[25], RICH[39] and 
LINUS [7]. 

Interactive/Non-interactive: In interactive ILP, the learner is allowed to pose 
questions to an oracle (i.e. the user) about the intended interpretation.. Usually these 
questions query the user for the intended interpretation of an example or a clause. 
The answers to the queries allow to prune large parts of the search space (in the 
generic algorithm queries would normally be generated in the procedure Prune). 
Obviously, interactiveness implies incrementality. Most systems are non- 
interactive.. For example, interactive systems are: CIGOL [19], MARVIN [32], 
IRES [31] и ITOU [30]. 

Single/Multiple Predicate Learning: Single predicate learning systems are 
most popular ILP systems, but multiple predicate learning algorithms are more 
powerful. Although they are non efficient and hard. Recently interest to such 
systems growing: FORTE [29].  

Theory Revision: Usually most of the systems have prestored BK, and 
systems keep it unchanged during the learning process, but there are some systems 
that allow theory revision. Although modifications of BK are possible, these 
systems observe the principle to stay most closely to the initial BK and to do 



minimum changes. Usually systems with theory revision are incremental multiple 
predicate learning systems. For example, MARVIN[32], CIGOL[19], M-ACL [11]. 
Theory revision systems often use many deductive and inductive rules, e.g. 
abduction combined with specialization and generalization M-ACL [11], ACL[12]. 

5. ILP Learning approaches 

5.1. Algorithms using multiple representation 
In these algorithms initially examples have relational representation and then 

they are transformed to new representation (usually propositional language). Thus, 
using these new examples’ description algorithms can take advantages of some 
propositional learning algorithms. Finally the result hypotheses are transformed 
back to the initial representation. Thereby they avoid searching in the complex Horn 
clauses hypotheses space and construct compact hypothesis represented on the 
relational language. Algorithms WYL [8] and LINUS [7] use this approach. 

In WYL initially examples are represented by relational language and then 
they are transformed to propositional language and hypothesis is created using 
decision trees. Finally the result hypothesis is transformed back to the relational 
language. 

The current version of LINUS supports interfaces for working with 
propositional algorithms ASSISTANT [3], NEWGEM [17], and CN2[4]. LINUS 
has two modes: 

 CLASS – corresponds to the propositional algorithm employed; 
 RELATION – in this mode LINUS works as ILP system. 

The basic principle of the transformation from first-order into propositional 
form is that all body literals which may possibly appear in a hypothesis clause (in 
the first-order formalism) are determined, thereby taking into account variable 
types. Each of these body literals corresponds to a boolean attribute in the 
propositional formalism.  

One of the major defects of this approach is that these algorithms can not use 
BK, because they use proporsitional language for learning. 
5.2. Searching in the hypothesis space  

A lots of ILP algorithms belong to this group and use following search bias:  
 Uniformed search (depth-first, breadth-first, iterative deepening): This is 

rarely used approach, because the huge hypothesis space. One of 
algorithms from this class  is HYPER [2]. It learns logic programs 
by searching the space of complete hypotheses (i.e., sets of 
programs clauses), rather than performing repeated search for 
individual clauses. 

 Heuristic search (best-first, hill-climbing, beam search)  
- for directing search 
- for stopping search (quality criterion) 

FOIL [27] is one of the first successful empirical relational learning 
algorithms used this approach and on its base are developed many other algorithms. 



Positive as well as negative examples are required for learning. FOIL induces 
concept definitions represented as function-free Horn clauses, optionally containing 
negated body literals. The background knowledge predicates are represented 
extensionally as sets of ground tuples. FOIL employs a heuristic search strategy 
(hill-climbing according to the information gain heuristics), which prunes vast parts 
of the hypothesis space. As its general search strategy, FOIL adopts a covering 
approach. For further control of the language bias, FOIL provides parameters 
limiting the total number and maximum depth of variables in a single clause. In 
addition, FOIL incorporates mechanisms for excluding literals which might lead to 
endless loops in recursive hypothesis clauses. FOIL stops adding literals to the 
hypothesis clause if the clause reaches a predefined minimum accuracy or if the 
encoding length of the clause exceeds the number of bits needed for explicitly 
encoding the positive examples it covers. This stop criterion prevents the induction 
of overly long and specific clauses in noisy domains.  

Although search strategies of FOIL and its family algorithms makes them 
very efficient, they have considerable defect - these algorithms in the search process 
sometimes can prune searched hypotheses. To solve this problem are developed 
different modifications of FOIL: 

 Language bias: FOCL [22] allows user-defined constraints which realize 
a declarative language bias (e.g. number of body literals in clauses) allow 
to restrict the search space.  

 Imperfect data handling: HYDRA [1], MFOIL [6] The concept 
descriptions compete to classify test examples based on the likelihood 
ratios that are assigned to clauses of that concept description. This makes 
the algorithm more robust against noise. 

 Heuristics modification:  
- CHAM [14] extends FOIL's information-gain heuristic with a 

syntactic measure of the “closeness" between a clause's input and 
existentially quantified variables with its output variables. This 
extension helps it to learn relations not learnable by FOIL. 

- MFOIL [6] uses beam-search with  m –estimate heuristics function 
that  takes into account the prior probabilities of examples, leading to 
a more reliable criterion for small example sets. The user-settable 
parameter m allows to control the influence of the prior probabilities 

- CLOG [15] the currently used gain function is user-defined. 
- ILP-R [25] It uses a non-myopic heuristic function called RELIEF. 

At the outer level, this learner uses a covering approach similar to the 
one used by FOIL. At the inner level, its top-down search for a 
consistent clause uses the RELIEF based heuristic for literal quality 
estimation. 

 Decision-trees: 
- STRUCT [33] learns decision trees, where the root is the head of the 

target relation, each interior node is a literal, and paths through the 
tree encode Horn clauses.] 

- FFOIL [28] - the clauses found by FFOIL make up a decision list 



- FOIDL [18] is a descendant of FOIL Unlike FFOIL, FOIDL 
generates the clauses in the decision list in reverse order. 

 Heuristic search algorithm: 
- MARKUS [10] employs a covering strategy as FOIL, but it uses 

iterative deepening search. 
- MFOIL [6] uses beam-search. 

 Other features: 
- theory revision: FORTE (First Order Revision of Theories from 

Examples) [29]. 
- inverse resolution operators: FORTE [29]. 
- functional relations: FFOIL [28] is specialized on learning functional 

relations. A functional relation is a relation where one or more 
arguments are distinguished as output arguments, and in any tuple of 
constants belonging to the relation the values of the output arguments 
are uniquely determined by the values of the other arguments. 

- numerical arguments: Handling numerical constraints in the normal 
ILP setting takes the form of induction of classification or regression 
rules that involve the use of real numbers, predicting a discrete or a 
real-valued class in the presence of background knowledge. FORS 
(First order regression system) [13] is an implementation of this idea, 
where numerical regression is focused on a distinguished continuous 
argument of the target predicate. This can be viewed as a 
generalization of the usual ILP problem.  

 
5.3. Inverse resolution: 

ILP systems use the following varieties of inverse resolution V- and 
W-operators (Table 1).: absorbtion, identification, intra-construction, inter-
construction, truncation, G1,G2.  

 
Table 1 Inverse resolution operators 

System Absorbtion Inter-
construction 

Intra-
construction 

Truncation G1 G2 

MARVIN  X      
RINCON X X     
CIGOL X  X X   
IRES X  X X   
ITOU X  X X   
LFP2     X X 

 
MARVIN [32] was the first relational algorithm to incorporate this 

approach.. MARVIN is oracle-guided incremental algorithm. However, its concept 
description language is limited: it cannot learn clauses with existentially quantified 
variables and cannot invent new predicate descriptors.  



RINCON [35] also is an incremental algorithm, but not oracle-guided. It uses 
intra-construction operator for inducing new predicate and after that apply 
absorbtion to replace some of literals with the head of newly generated predicate. 

CIGOL [19] is oracle-guided incremental algorithm This is the first 
algorithm combining the three major inverse resolution operators. CIGOL's 
truncation operator is restricted to processing unit Horn clauses and the 
implementation of its other operators assume that one of the parent clauses is a unit 
clause. LFP2 [34] replaces CIGOL 's three operators with two more general 
operators that have no unit clause restrictions. 

IRES [31] uses IRES system uses a flattening technique to simplify CIGOL 's 
operators and allow them to work with non-unit Horn clauses. ITOU [30] is 
descendant of IRES, and it uses the same operators like IRES, but extended with 
saturation. 

 
5.4. Iinverse entailment 

Inverse entailment approach was introduced by S. Muggleton [21]. The main 
difference between inverse entailment and inverse resolution is that in the first 
approach treats the problem of finding clauses from model-theoretical point of 
view, but the second approach treats this problem from proof-theoretical point of 
view. Only a few systems use inverse entailment approach: P-Progol [21] and its 
descendent Aleph. 
5.5. Constructing RLGG (Relative least general generalization)  

One of the characteristics of these systems is that they instead searching in 
the hypothesis space, tries to construct a clause that generalizes the set of examples. 
The first algorithm from this class was developed by Plotkin [23, 24], but 
unfortunately it was more theoretical than practical, because the number of literals 
in the constructed hypothesis increases exponentially and in some cases infinite. 

GOLEM [20] is one of the “classical” algorithms using this approach. 
GOLEM is empirical algorithm and uses covering methods. It chooses random 
subset of the set of positive examples and constructs their RLGG. Between all 
constructed RLGG in such way, GOLEM chooses this one that covers greatest 
number positive examples and does not cover negative examples. On the next step 
GOLEM generalizes the best RLGG. This process continues until increasing the set 
of cover positive examples from the constructed RLGG stop. As a final step 
GOLEM reduces constructed RLGG by dropping irrelevant literals. Both the BK 
and examples consist only ground facts. There are also some restrictions to the 
hypothesis variables depth. GOLEM can not generate automatically new predicates. 

RICH (Relative Implication of Horn clauses) [39] is also empirical algorithm, 
but in contracts of GOLEM both BK and examples consist function-free non 
recursive Horn clauses. To construct hypothesis RICH uses unification, anti-
unification algorithms and some resolution steps. RICH can generate automatically 
new predicates. 



6. Accuracy and Time characteristics 
The following characteristics are measured in the classical chess and 

endgame domain  “White King and Rook versus Black King”, described in [40]. 
The results of the experiment are presented in the following table: The classification 
accuracy is given  by the percentage of correctly classified testing instances and by 
the standard deviation (sd), averaged over 5 experiments. 

Table 2 
100 training examples 1000 training examples 

System Accuracy Time Accuracy Time 
CIGOL 77.2% 21.5hr N/A N/A 
FOIL 90.8% 31.6 sec 99.4% 4.0 min 
LINUS-
ASSISTANT 

98.1% 55.0 sec 99.7% 9.6 min 

RICH 95.3% 53.9 sec 99.6% 8.3 min 
 
Although LINUS is better than others algorithms in small and large training 

sets, it has one major defect - does not provide features for handling BK. From the 
rest algorithms RICH has better accuracy, but it is slower. 

Summary 
Although search strategies of FOIL and its family algorithms makes them 

very efficient, they have considerable defect - these algorithms in the search process 
sometimes can prune searched hypotheses.  

Many inverse resolution algorithms increase the concept description 
language by constructing predictor descriptors (i.e., predicates), but are either 
limited to deduction or require an oracle to maintain reasonable efficiency. 

Constructing RLGG methods employ additional constraints on the concept 
representation language (i.e., on existentially quantified variables). This trade off 
increases efficiency. However, efficient RLGG methods for automatically 
constructing descriptors have not yet been developed. 

All of these algorithms are limited. For example, algorithms that use multiple 
representations cannot yet learn recursive relations. Information-gain directed 
algorithms cannot yet learn relations with function symbols. Efficient methods for 
automatically generating higher-order schemas without oracle guidance do not yet 
exist, except when learning is restricted to deductive inferencing. Most of RLGG 
methods cannot generate new descriptors. 



References 
[1] Ali K.M. and M.J. Pazzani. Hydra: A noise-tolerant relational concept learning algorithm.  

Proc. of IJCAI –93, pp. 1064-1071. Morgan Kaufmann, 1993. 
[2] Bratko I.. Refining complete hypotheses in ILP. In Proc. of 9th International Workshop on 

Inductive Logic Programming, pp. 44-55. Springer, 1999. 
[3] Cestnik, B., Kononenko, I., & Bratko, I.. ASSISTANT-86: A knowledge-elicitation tool for 

sophisticated users. In I. Bratko & N. Lavrač (Eds.), Progress in Machine learning. Bled, 
Yugoslavia: Sigma Press, 1987 

[4] Clark, P. E., & Boswell, R. Rule induction with CN2: Some recent improvements. In 
Proceedings of the Fifth European Working Session on Learning  pp. 151-163. Porto, Portugal: 
Springer-Verlag. 1991. 

[5] De Raedt, L., & Bruynooghe, M.. Constructive induction by analogy. In Proc. of ICML -89,  
pp. 476-477. Morgan Kaufmann. 1989. 

[6] Dzeroski. S. Handling imperfect data in inductive logic programming. In Procc. of the 4th 
Scandinavian Conference on AI, pp.  111-125. IOS Press, 1993. 

[7] Džeroski S. and N. Lavrač. Learning relations from noisy examples: An empirical comparison 
of LINUS and FOIL. In L. Birnbaum and G. Collins, eds., Proc. of the 8th International 
Workshop on Machine Learning, pp. 399-402. Morgan Kaufmann, 1991.  

[8] Flann, N. S., & Dietterich, T. G. Selecting appropriate representations for learning from 
examples. In Proceedings of the Fifth National Conference on Artificial Intelligence, pp. 460-
466. Philadelphia, PA: Morgan Kaufmann, 1986. 

[9] Giordana A. and F. Neri. Search-intensive concept induction. Evolutionary Computation 
Journal, 3(4):375-416, 1996. 

[10] Grobelnik M.. MARKUS: An optimized model inference system. In C. Rouveirol, editor, Proc. 
of the ECAI-92 Workshop on Logical Approaches to ML, 1992. 

[11] Kakas A., E. Lamma, and F. Riguzzi. Learning multiple predicates. In M. Lenzerini, editor, 
Proc. of AIMSA-98LNAI,  1480, pp. 303-316. Springer-Verlag, 1998. 

[12] Kakas A.C. and F. Riguzzi, Learning with Abduction. Proc. in ILP97, Lecture Notes in 
Artificial Intelligence, Volume 1297, Springer-Verlag, 1997, pp. 181-189, 1997 

[13] Karalic A., I. Bratko: First Order Regression. Machine Learning, 1997. 
[14] Kijsirikul, B., Numao, M., & Shimura, M.. Efficient learning of logic programs with non-

determinate, non-discriminating literals. In Proc. of the First International Workshop on 
Inductive Logic Programming, pp. 33-40. 1991 

[15] Manandhar Suresh, Saso Dzeroski, and Tomaz Erjavec. Learning Multilingual Morphology 
with CLOG. In  Proc. of ILP'98, Madison, Wisconsin, USA, 1998. 

[16] Markov, Z. A Functional Approach to ILP, Proc. of ILP-95, 4-6 Sept. 1995, Leuven,  
Scientific report, Department of Computer Science, K.U. Leuven, pp. 267-280. 1995 

[17] Mozetic, I., NEWGEM: Program for learning from examples. Technical documentation and 
user's guide.  Reports of Intelligent Systems Group UIUCDCS-F-85-949, Department of 
Computer Science, University of  Illinois. Urbana Champaign, IL, 1985. 

[18] Mooney R.J. and M.E. Califf. Induction of first-order decision lists: Results on learning the 
past tense of English verbs. Journal of Artificial Intelligence Research, 3:1-24, 1995. 

[19] Muggleton, S. and Buntine, W. Machine invention of first-order predicates by inverting 
resolution. In J.Laird editior, Proc. ICML-88,pp. 339-352, Morgan Kaufman, San Mateo, CA. 
1988. 

[20] Muggleton, S., & Feng, C. Efficient induction of logic programs. Proc. of the First 
International Workshop on Algorithmic Learning Theory, 368-381, Tokyo, Japan: Japanese 
Society for Artificial Intelligence. 1990. 

[21] Muggleton, S. Inverse entailment and Progol. New Generation Computing, pp. 245–286, 1995 
[22] Pazzani, M., & Kibler, D. The utility of knowledge in inductive learning (Technical Report 90-

18). University of California, Irvine, Department of Information and Computer Science. 1990. 
[23] Plotkin G.D.. A note on the inductive generalization. Machine Intelligence, 5:153-163, 1970. 



[24] Plotkin G.D.. Automatic Methods of Inductive Inference. PhD thesis, Edinburg University, 
1971. 

[25] Pompe U.. Restricting the hypothesis space, guiding the search, and handling the redundant 
information in ILP. MSc Thesis, University of Ljubljana, Faculty of Computer Science and 
Informatics, Ljubljana, 1996. 

[26] Popelinsky L., Stepankova 0.: WiM: A Study on the Top-Down ILP Program. FIMU-RS-95-
03, Faculty of  Informatics, 1995. 

[27] Quinlan, J. R.. Learning logical definitions from relations. Machine Learning, 5, 239-266, 
1990 

[28] Quinlan. J.R. Learning first-order definitions of functions. Journal of Artificial Intelligence 
Research, 5:139-161, 1996. 

[29] Richards B.L. and R.J. Mooney. Refinement of first-order Horn-clause domain theories. 
Machine Learning, 19(2):95-131, 1995. 

[30] Rouveirol C. Extensions of Inversion of Resolution applyied to Theory Completion. Inductive 
Logic Programming, S, Muggleton (Ed.). Academic Press: London, pp. 63- 92, 1992. 

[31] Rouveirol, C., & Puget, J. F. Beyond inversion of resolution. In Proceedings of the Seventh 
International Conference on Machine Learning, pp. 122-130. Austin, TX: Morgan Kaufmann. 
1990. 

[32] Sammut, C., & Banerji, R. B. Learning concepts by asking questions. In R. S. Michalski, J. 
G.Car-bonell, & T. M. Mitchell (Eds.), Machine learning: An artificial intelligence approach 
(Vol. II). San Mateo, CA: Morgan Kaufmann. 1986. 

[33] Watanabe, L., & Rendell, L. Learning structural decision trees from examples. In Proc. of 
IJCAI-91. Sydney, Australia,1991 

[34] Wirth, R. Completing logic programs by inverse resolution. In Proceedings of the Fourth 
European Working Session on Learning pp. 239-250. Montpellier, France: Pitman. 1989. 

[35] Wogulis, J. A framework for improving efficiency and accuracy. In Proc. of the Sixth Inter-
national Workshop on Machine Learning, pp. 78-80. Morgan Kaufmann. 1989. 

[36] Wrobel, S. Automatic representation adjustment in an observational discovery system. In 
Proceedings of the Third European Working Session on Learning, pp. 253-262. Glasgow, 
Scotland: Pitman. 1988 

[37] Wirth, R., & O'Rorke, P.. Inductive completion of SLD proofs. In Proceedings of the First In-
Iternational Workshop on Inductive Logic Programming, pp. 167-176, 1991 

[38] Zelle J.M., R.J. Mooney, and J.B. Konvisser. Combining top-down and bottom-up techniques 
in inductive logic programming. In W.W. Cohen and H. Hirsh, editors, Proc. of ICML-94, pp. 
343-351. Morgan Kaufmann, 1994. 

[39] Boytcheva, S., Z. Markov, An Algorithm for inducing least generalization under relative 
implication, In Proc. of the 15th International conference of Florida Artificial Intelligence 
Research Society (FLAIRS-2002), AAAI Press, 13-16 May 2002, Pensacola, Florida, USA, 
pp. 322-326, 2002. 

[40] Muggleton S., Bain M., Hayes-Michie J. and D. Michie.  An experimental comparison of 
human and machine learning formalisms. In Proc, Sixth International Workshop on Machine 
Learning, pp. 113-118, Morgan Kaufmann, San Mateo, CA, 1989. 

 
Абстракт: Настоящата статия е кратък обзор на системите базирани на  ИЛП 
(индуктивно логическо програмиране). Алгоритмите в ИЛП са от особен 
интерес за МС (машинното самообучение), защото повечето от тях предлагат 
практически методи за разширяване на представянето използвано при 
решаването на тези задачи. Статията представя основните подходи, които се 
използват в системите за решаването на задачите за МС, прави сравнение на 
техните основни характеристики, и представя класификации според различни 
критерии. 


	Overview of ILP Systems 
	1. Introduction 
	2. Language Bias 
	3. Shift of Bias 
	4. Characteristics of ILP systems 
	5. ILP Learning approaches 
	5.2. Searching in the hypothesis space  
	6. Accuracy and Time characteristics 
	Summary 


