

Overview of ILP Systems

Svetla Boytcheva

Department of Information Technologies, Faculty of Mathematics and Informatics,
Sofia University, Bulgaria

Abstract: The current paper presents a brief overview of Inductive logic
programming (ILP) systems. ILP algorithms are of special interest for machine
learning, because most of them offer practical methods for extending the
presentations used in algorithms that solve supervised learning tasks. The paper
presents major approaches for solving supervised learning task, summarizes their
features and classifies systems according different dimensions.
Keywords: Inductive logic programming, Supervised Learning, Relational Learning

1. Introduction
ILP algorithms are of special interest for machine learning, because most of

them offer practical methods for extending the presentations used in algorithms that
solve supervised learning tasks. According to languages used for presentation of
examples, hypotheses and background knowledge (BK) we can separate these
machine learning algorithms to two major classes: propositional (attribute-value)
and relational. Relational languages are based on first-order logic and they are more
expressive than propositional languages, because they allow more compact
presentation of hypotheses, construction of recursive hypotheses, background
knowledge usage. Thus relational representation is more convenient than attribute-
value representation for many task domains, including: geography, mutogenesis,
natural language processing, proteins’ structure analyses, information extraction,
mesh analyses, robotics, drugs and etc. The paper surveys ILP algorithms, focusing
on major approaches for solving supervised learning task, summarizes their features
and classifies systems according different dimensions.

2. Language Bias
ILP algorithms usually use one of the following relational languages:

 general clauses language
 Horn clauses language

Construction of the hypothesis in the language frameworks is not always
possible, because of the following reasons:

 hypotheses space is huge and/or complex
 used language is not expressive enough

To solve this problem are used to types of bias - mechanism employed by a
learner to constrain the search for hypotheses:

 language bias - determines the search space itself
 search bias - determines how the hypothesis space is searched .

There are two categories language bias
 the syntactic restrictions of the selected logic formalism;
 the vocabulary of predicate, function, variables and constant symbols:

function-free clauses, ground clauses (e.g. without variables), non-
recursive clauses, mode declarations (input/output) of the predicates'
arguments

To represent examples, hypotheses and BK in the learning task are used
examples' language (LE), hypotheses language (LH) and BK language (LB).

Each of language restrictions mentioned above could be applied to each of
these languages independently, or to all of them together (Table 1).

Table 1

Language bias

System

mode declarations
(input/output)
types of the
predicates'
arguments

function-
free

clauses

ground
clauses

ground
literals

non-
recursive
clauses

Horn
clauses

LINUS LE LH LH

FOIL LE , LH LE LB LH

MARKUS LE , LB, LH LH

FOIDL LE , LH LE LH

GOLEM LE , LB LH

LFP2 LE , LB LH

RICH LE , LB LB LE , LB, LH

All ILP systems use some language bias. Mode declarations and learning of

non-recursive clauses are necessary for narrowing search in the hypotheses space,
but other language restrictions are imposed from the theory. For example, such a

hypothesis does not exists in general case when both set of examples and BK set
consists of Horn clauses.
3. Shift of Bias

To construct a hypothesis there are also used two types shift of bias:
 switch to a more expressive language (higher-order rules):

- second-order schema: CIA [5], WiM [26] learns higher-order rule
schemas by simply variablizing both the terms and the predicates of
previously generated Horn clauses;

- higher-order rule schemas: MODELER [36] keeps to each rule a set
of its exceptions and this set increases enough generates a new
predicate;

- lambda-calculus:LILP (Lambda Inductive Logic Programming) [16].
 extend the given vocabulary by new predicates – predicate invention:

MODELER [36], RINCON[35], CHILLIN[38], CIGOL[19], RICH[39].
Bias shift is used to construct more compact hypothesis, but usually the

hypotheses space increases.

4. Characteristics of ILP systems
Incremental/ Non-incremental: This dimension describes the way the

evidence (examples) is obtained. In non-incremental or empirical ILP, the evidence
is given at the start and not changed afterwards, in incremental ILP, the examples
are input one by one by the user, in a piecewise fashion. Non-incremental systems
search typically either specific-to-general or general-to-specific. Incremental
systems usually employ a mixture of these strategies as they may need to correct
earlier induced hypotheses. Incremental ILP systems include: FORTE [29], LFP2
[34], MARVIN[32], RINCON [35] и CIGOL [19]. Empirical ILP systems include:
GOLEM [20], FOIL [27], FOCL [22], МFOIL [6], ILP-R[25], RICH[39] and
LINUS [7].

Interactive/Non-interactive: In interactive ILP, the learner is allowed to pose
questions to an oracle (i.e. the user) about the intended interpretation.. Usually these
questions query the user for the intended interpretation of an example or a clause.
The answers to the queries allow to prune large parts of the search space (in the
generic algorithm queries would normally be generated in the procedure Prune).
Obviously, interactiveness implies incrementality. Most systems are non-
interactive.. For example, interactive systems are: CIGOL [19], MARVIN [32],
IRES [31] и ITOU [30].

Single/Multiple Predicate Learning: Single predicate learning systems are
most popular ILP systems, but multiple predicate learning algorithms are more
powerful. Although they are non efficient and hard. Recently interest to such
systems growing: FORTE [29].

Theory Revision: Usually most of the systems have prestored BK, and
systems keep it unchanged during the learning process, but there are some systems
that allow theory revision. Although modifications of BK are possible, these
systems observe the principle to stay most closely to the initial BK and to do

minimum changes. Usually systems with theory revision are incremental multiple
predicate learning systems. For example, MARVIN[32], CIGOL[19], M-ACL [11].
Theory revision systems often use many deductive and inductive rules, e.g.
abduction combined with specialization and generalization M-ACL [11], ACL[12].

5. ILP Learning approaches

5.1. Algorithms using multiple representation
In these algorithms initially examples have relational representation and then

they are transformed to new representation (usually propositional language). Thus,
using these new examples’ description algorithms can take advantages of some
propositional learning algorithms. Finally the result hypotheses are transformed
back to the initial representation. Thereby they avoid searching in the complex Horn
clauses hypotheses space and construct compact hypothesis represented on the
relational language. Algorithms WYL [8] and LINUS [7] use this approach.

In WYL initially examples are represented by relational language and then
they are transformed to propositional language and hypothesis is created using
decision trees. Finally the result hypothesis is transformed back to the relational
language.

The current version of LINUS supports interfaces for working with
propositional algorithms ASSISTANT [3], NEWGEM [17], and CN2[4]. LINUS
has two modes:

 CLASS – corresponds to the propositional algorithm employed;
 RELATION – in this mode LINUS works as ILP system.

The basic principle of the transformation from first-order into propositional
form is that all body literals which may possibly appear in a hypothesis clause (in
the first-order formalism) are determined, thereby taking into account variable
types. Each of these body literals corresponds to a boolean attribute in the
propositional formalism.

One of the major defects of this approach is that these algorithms can not use
BK, because they use proporsitional language for learning.
5.2. Searching in the hypothesis space

A lots of ILP algorithms belong to this group and use following search bias:
 Uniformed search (depth-first, breadth-first, iterative deepening): This is

rarely used approach, because the huge hypothesis space. One of
algorithms from this class is HYPER [2]. It learns logic programs
by searching the space of complete hypotheses (i.e., sets of
programs clauses), rather than performing repeated search for
individual clauses.

 Heuristic search (best-first, hill-climbing, beam search)
- for directing search
- for stopping search (quality criterion)

FOIL [27] is one of the first successful empirical relational learning
algorithms used this approach and on its base are developed many other algorithms.

Positive as well as negative examples are required for learning. FOIL induces
concept definitions represented as function-free Horn clauses, optionally containing
negated body literals. The background knowledge predicates are represented
extensionally as sets of ground tuples. FOIL employs a heuristic search strategy
(hill-climbing according to the information gain heuristics), which prunes vast parts
of the hypothesis space. As its general search strategy, FOIL adopts a covering
approach. For further control of the language bias, FOIL provides parameters
limiting the total number and maximum depth of variables in a single clause. In
addition, FOIL incorporates mechanisms for excluding literals which might lead to
endless loops in recursive hypothesis clauses. FOIL stops adding literals to the
hypothesis clause if the clause reaches a predefined minimum accuracy or if the
encoding length of the clause exceeds the number of bits needed for explicitly
encoding the positive examples it covers. This stop criterion prevents the induction
of overly long and specific clauses in noisy domains.

Although search strategies of FOIL and its family algorithms makes them
very efficient, they have considerable defect - these algorithms in the search process
sometimes can prune searched hypotheses. To solve this problem are developed
different modifications of FOIL:

 Language bias: FOCL [22] allows user-defined constraints which realize
a declarative language bias (e.g. number of body literals in clauses) allow
to restrict the search space.

 Imperfect data handling: HYDRA [1], MFOIL [6] The concept
descriptions compete to classify test examples based on the likelihood
ratios that are assigned to clauses of that concept description. This makes
the algorithm more robust against noise.

 Heuristics modification:
- CHAM [14] extends FOIL's information-gain heuristic with a

syntactic measure of the “closeness" between a clause's input and
existentially quantified variables with its output variables. This
extension helps it to learn relations not learnable by FOIL.

- MFOIL [6] uses beam-search with m –estimate heuristics function
that takes into account the prior probabilities of examples, leading to
a more reliable criterion for small example sets. The user-settable
parameter m allows to control the influence of the prior probabilities

- CLOG [15] the currently used gain function is user-defined.
- ILP-R [25] It uses a non-myopic heuristic function called RELIEF.

At the outer level, this learner uses a covering approach similar to the
one used by FOIL. At the inner level, its top-down search for a
consistent clause uses the RELIEF based heuristic for literal quality
estimation.

 Decision-trees:
- STRUCT [33] learns decision trees, where the root is the head of the

target relation, each interior node is a literal, and paths through the
tree encode Horn clauses.]

- FFOIL [28] - the clauses found by FFOIL make up a decision list

- FOIDL [18] is a descendant of FOIL Unlike FFOIL, FOIDL
generates the clauses in the decision list in reverse order.

 Heuristic search algorithm:
- MARKUS [10] employs a covering strategy as FOIL, but it uses

iterative deepening search.
- MFOIL [6] uses beam-search.

 Other features:
- theory revision: FORTE (First Order Revision of Theories from

Examples) [29].
- inverse resolution operators: FORTE [29].
- functional relations: FFOIL [28] is specialized on learning functional

relations. A functional relation is a relation where one or more
arguments are distinguished as output arguments, and in any tuple of
constants belonging to the relation the values of the output arguments
are uniquely determined by the values of the other arguments.

- numerical arguments: Handling numerical constraints in the normal
ILP setting takes the form of induction of classification or regression
rules that involve the use of real numbers, predicting a discrete or a
real-valued class in the presence of background knowledge. FORS
(First order regression system) [13] is an implementation of this idea,
where numerical regression is focused on a distinguished continuous
argument of the target predicate. This can be viewed as a
generalization of the usual ILP problem.

5.3. Inverse resolution:

ILP systems use the following varieties of inverse resolution V- and
W-operators (Table 1).: absorbtion, identification, intra-construction, inter-
construction, truncation, G1,G2.

Table 1 Inverse resolution operators

System Absorbtion Inter-
construction

Intra-
construction

Truncation G1 G2

MARVIN X
RINCON X X
CIGOL X X X
IRES X X X
ITOU X X X
LFP2 X X

MARVIN [32] was the first relational algorithm to incorporate this

approach.. MARVIN is oracle-guided incremental algorithm. However, its concept
description language is limited: it cannot learn clauses with existentially quantified
variables and cannot invent new predicate descriptors.

RINCON [35] also is an incremental algorithm, but not oracle-guided. It uses
intra-construction operator for inducing new predicate and after that apply
absorbtion to replace some of literals with the head of newly generated predicate.

CIGOL [19] is oracle-guided incremental algorithm This is the first
algorithm combining the three major inverse resolution operators. CIGOL's
truncation operator is restricted to processing unit Horn clauses and the
implementation of its other operators assume that one of the parent clauses is a unit
clause. LFP2 [34] replaces CIGOL 's three operators with two more general
operators that have no unit clause restrictions.

IRES [31] uses IRES system uses a flattening technique to simplify CIGOL 's
operators and allow them to work with non-unit Horn clauses. ITOU [30] is
descendant of IRES, and it uses the same operators like IRES, but extended with
saturation.

5.4. Iinverse entailment

Inverse entailment approach was introduced by S. Muggleton [21]. The main
difference between inverse entailment and inverse resolution is that in the first
approach treats the problem of finding clauses from model-theoretical point of
view, but the second approach treats this problem from proof-theoretical point of
view. Only a few systems use inverse entailment approach: P-Progol [21] and its
descendent Aleph.
5.5. Constructing RLGG (Relative least general generalization)

One of the characteristics of these systems is that they instead searching in
the hypothesis space, tries to construct a clause that generalizes the set of examples.
The first algorithm from this class was developed by Plotkin [23, 24], but
unfortunately it was more theoretical than practical, because the number of literals
in the constructed hypothesis increases exponentially and in some cases infinite.

GOLEM [20] is one of the “classical” algorithms using this approach.
GOLEM is empirical algorithm and uses covering methods. It chooses random
subset of the set of positive examples and constructs their RLGG. Between all
constructed RLGG in such way, GOLEM chooses this one that covers greatest
number positive examples and does not cover negative examples. On the next step
GOLEM generalizes the best RLGG. This process continues until increasing the set
of cover positive examples from the constructed RLGG stop. As a final step
GOLEM reduces constructed RLGG by dropping irrelevant literals. Both the BK
and examples consist only ground facts. There are also some restrictions to the
hypothesis variables depth. GOLEM can not generate automatically new predicates.

RICH (Relative Implication of Horn clauses) [39] is also empirical algorithm,
but in contracts of GOLEM both BK and examples consist function-free non
recursive Horn clauses. To construct hypothesis RICH uses unification, anti-
unification algorithms and some resolution steps. RICH can generate automatically
new predicates.

6. Accuracy and Time characteristics
The following characteristics are measured in the classical chess and

endgame domain “White King and Rook versus Black King”, described in [40].
The results of the experiment are presented in the following table: The classification
accuracy is given by the percentage of correctly classified testing instances and by
the standard deviation (sd), averaged over 5 experiments.

Table 2
100 training examples 1000 training examples

System Accuracy Time Accuracy Time
CIGOL 77.2% 21.5hr N/A N/A
FOIL 90.8% 31.6 sec 99.4% 4.0 min
LINUS-
ASSISTANT

98.1% 55.0 sec 99.7% 9.6 min

RICH 95.3% 53.9 sec 99.6% 8.3 min

Although LINUS is better than others algorithms in small and large training

sets, it has one major defect - does not provide features for handling BK. From the
rest algorithms RICH has better accuracy, but it is slower.

Summary
Although search strategies of FOIL and its family algorithms makes them

very efficient, they have considerable defect - these algorithms in the search process
sometimes can prune searched hypotheses.

Many inverse resolution algorithms increase the concept description
language by constructing predictor descriptors (i.e., predicates), but are either
limited to deduction or require an oracle to maintain reasonable efficiency.

Constructing RLGG methods employ additional constraints on the concept
representation language (i.e., on existentially quantified variables). This trade off
increases efficiency. However, efficient RLGG methods for automatically
constructing descriptors have not yet been developed.

All of these algorithms are limited. For example, algorithms that use multiple
representations cannot yet learn recursive relations. Information-gain directed
algorithms cannot yet learn relations with function symbols. Efficient methods for
automatically generating higher-order schemas without oracle guidance do not yet
exist, except when learning is restricted to deductive inferencing. Most of RLGG
methods cannot generate new descriptors.

References
[1] Ali K.M. and M.J. Pazzani. Hydra: A noise-tolerant relational concept learning algorithm.

Proc. of IJCAI –93, pp. 1064-1071. Morgan Kaufmann, 1993.
[2] Bratko I.. Refining complete hypotheses in ILP. In Proc. of 9th International Workshop on

Inductive Logic Programming, pp. 44-55. Springer, 1999.
[3] Cestnik, B., Kononenko, I., & Bratko, I.. ASSISTANT-86: A knowledge-elicitation tool for

sophisticated users. In I. Bratko & N. Lavrač (Eds.), Progress in Machine learning. Bled,
Yugoslavia: Sigma Press, 1987

[4] Clark, P. E., & Boswell, R. Rule induction with CN2: Some recent improvements. In
Proceedings of the Fifth European Working Session on Learning pp. 151-163. Porto, Portugal:
Springer-Verlag. 1991.

[5] De Raedt, L., & Bruynooghe, M.. Constructive induction by analogy. In Proc. of ICML -89,
pp. 476-477. Morgan Kaufmann. 1989.

[6] Dzeroski. S. Handling imperfect data in inductive logic programming. In Procc. of the 4th
Scandinavian Conference on AI, pp. 111-125. IOS Press, 1993.

[7] Džeroski S. and N. Lavrač. Learning relations from noisy examples: An empirical comparison
of LINUS and FOIL. In L. Birnbaum and G. Collins, eds., Proc. of the 8th International
Workshop on Machine Learning, pp. 399-402. Morgan Kaufmann, 1991.

[8] Flann, N. S., & Dietterich, T. G. Selecting appropriate representations for learning from
examples. In Proceedings of the Fifth National Conference on Artificial Intelligence, pp. 460-
466. Philadelphia, PA: Morgan Kaufmann, 1986.

[9] Giordana A. and F. Neri. Search-intensive concept induction. Evolutionary Computation
Journal, 3(4):375-416, 1996.

[10] Grobelnik M.. MARKUS: An optimized model inference system. In C. Rouveirol, editor, Proc.
of the ECAI-92 Workshop on Logical Approaches to ML, 1992.

[11] Kakas A., E. Lamma, and F. Riguzzi. Learning multiple predicates. In M. Lenzerini, editor,
Proc. of AIMSA-98LNAI, 1480, pp. 303-316. Springer-Verlag, 1998.

[12] Kakas A.C. and F. Riguzzi, Learning with Abduction. Proc. in ILP97, Lecture Notes in
Artificial Intelligence, Volume 1297, Springer-Verlag, 1997, pp. 181-189, 1997

[13] Karalic A., I. Bratko: First Order Regression. Machine Learning, 1997.
[14] Kijsirikul, B., Numao, M., & Shimura, M.. Efficient learning of logic programs with non-

determinate, non-discriminating literals. In Proc. of the First International Workshop on
Inductive Logic Programming, pp. 33-40. 1991

[15] Manandhar Suresh, Saso Dzeroski, and Tomaz Erjavec. Learning Multilingual Morphology
with CLOG. In Proc. of ILP'98, Madison, Wisconsin, USA, 1998.

[16] Markov, Z. A Functional Approach to ILP, Proc. of ILP-95, 4-6 Sept. 1995, Leuven,
Scientific report, Department of Computer Science, K.U. Leuven, pp. 267-280. 1995

[17] Mozetic, I., NEWGEM: Program for learning from examples. Technical documentation and
user's guide. Reports of Intelligent Systems Group UIUCDCS-F-85-949, Department of
Computer Science, University of Illinois. Urbana Champaign, IL, 1985.

[18] Mooney R.J. and M.E. Califf. Induction of first-order decision lists: Results on learning the
past tense of English verbs. Journal of Artificial Intelligence Research, 3:1-24, 1995.

[19] Muggleton, S. and Buntine, W. Machine invention of first-order predicates by inverting
resolution. In J.Laird editior, Proc. ICML-88,pp. 339-352, Morgan Kaufman, San Mateo, CA.
1988.

[20] Muggleton, S., & Feng, C. Efficient induction of logic programs. Proc. of the First
International Workshop on Algorithmic Learning Theory, 368-381, Tokyo, Japan: Japanese
Society for Artificial Intelligence. 1990.

[21] Muggleton, S. Inverse entailment and Progol. New Generation Computing, pp. 245–286, 1995
[22] Pazzani, M., & Kibler, D. The utility of knowledge in inductive learning (Technical Report 90-

18). University of California, Irvine, Department of Information and Computer Science. 1990.
[23] Plotkin G.D.. A note on the inductive generalization. Machine Intelligence, 5:153-163, 1970.

[24] Plotkin G.D.. Automatic Methods of Inductive Inference. PhD thesis, Edinburg University,
1971.

[25] Pompe U.. Restricting the hypothesis space, guiding the search, and handling the redundant
information in ILP. MSc Thesis, University of Ljubljana, Faculty of Computer Science and
Informatics, Ljubljana, 1996.

[26] Popelinsky L., Stepankova 0.: WiM: A Study on the Top-Down ILP Program. FIMU-RS-95-
03, Faculty of Informatics, 1995.

[27] Quinlan, J. R.. Learning logical definitions from relations. Machine Learning, 5, 239-266,
1990

[28] Quinlan. J.R. Learning first-order definitions of functions. Journal of Artificial Intelligence
Research, 5:139-161, 1996.

[29] Richards B.L. and R.J. Mooney. Refinement of first-order Horn-clause domain theories.
Machine Learning, 19(2):95-131, 1995.

[30] Rouveirol C. Extensions of Inversion of Resolution applyied to Theory Completion. Inductive
Logic Programming, S, Muggleton (Ed.). Academic Press: London, pp. 63- 92, 1992.

[31] Rouveirol, C., & Puget, J. F. Beyond inversion of resolution. In Proceedings of the Seventh
International Conference on Machine Learning, pp. 122-130. Austin, TX: Morgan Kaufmann.
1990.

[32] Sammut, C., & Banerji, R. B. Learning concepts by asking questions. In R. S. Michalski, J.
G.Car-bonell, & T. M. Mitchell (Eds.), Machine learning: An artificial intelligence approach
(Vol. II). San Mateo, CA: Morgan Kaufmann. 1986.

[33] Watanabe, L., & Rendell, L. Learning structural decision trees from examples. In Proc. of
IJCAI-91. Sydney, Australia,1991

[34] Wirth, R. Completing logic programs by inverse resolution. In Proceedings of the Fourth
European Working Session on Learning pp. 239-250. Montpellier, France: Pitman. 1989.

[35] Wogulis, J. A framework for improving efficiency and accuracy. In Proc. of the Sixth Inter-
national Workshop on Machine Learning, pp. 78-80. Morgan Kaufmann. 1989.

[36] Wrobel, S. Automatic representation adjustment in an observational discovery system. In
Proceedings of the Third European Working Session on Learning, pp. 253-262. Glasgow,
Scotland: Pitman. 1988

[37] Wirth, R., & O'Rorke, P.. Inductive completion of SLD proofs. In Proceedings of the First In-
Iternational Workshop on Inductive Logic Programming, pp. 167-176, 1991

[38] Zelle J.M., R.J. Mooney, and J.B. Konvisser. Combining top-down and bottom-up techniques
in inductive logic programming. In W.W. Cohen and H. Hirsh, editors, Proc. of ICML-94, pp.
343-351. Morgan Kaufmann, 1994.

[39] Boytcheva, S., Z. Markov, An Algorithm for inducing least generalization under relative
implication, In Proc. of the 15th International conference of Florida Artificial Intelligence
Research Society (FLAIRS-2002), AAAI Press, 13-16 May 2002, Pensacola, Florida, USA,
pp. 322-326, 2002.

[40] Muggleton S., Bain M., Hayes-Michie J. and D. Michie. An experimental comparison of
human and machine learning formalisms. In Proc, Sixth International Workshop on Machine
Learning, pp. 113-118, Morgan Kaufmann, San Mateo, CA, 1989.

Абстракт: Настоящата статия е кратък обзор на системите базирани на ИЛП
(индуктивно логическо програмиране). Алгоритмите в ИЛП са от особен
интерес за МС (машинното самообучение), защото повечето от тях предлагат
практически методи за разширяване на представянето използвано при
решаването на тези задачи. Статията представя основните подходи, които се
използват в системите за решаването на задачите за МС, прави сравнение на
техните основни характеристики, и представя класификации според различни
критерии.

	Overview of ILP Systems
	1. Introduction
	2. Language Bias
	3. Shift of Bias
	4. Characteristics of ILP systems
	5. ILP Learning approaches
	5.2. Searching in the hypothesis space
	6. Accuracy and Time characteristics
	Summary

