
Software Construction of an Authoring Tool

for Adaptive E-learning Platforms

Dessislava Vassileva, Boyan Bontchev, Boryana Chavkova and Vladimir Mitev

Department of Software Engineering,

Faculty of Mathematics and Informatics,

Sofia University “St. Kl. Ohridski”,

5, J. Bourchier Blv., 1164 Sofia, BULGARIA

{ddessy, bbontchev, boryana.chavkova, vladimir.mitev}@gmail.com

Abstract

In last decade, more and more platforms for e-

learning content delivery provide adaptability towards

learners goals, styles and performance. Usually, such

platforms rely on own authoring tool or use external

one in order to create learning materials. Usually,

these tools follow modern e-learning standards but are

rather complicated to be used and miss

interoperability features. In this paper, we present

software construction of an authoring tool, which is a

part of a platform for building edutainment (education

plus entertainment) services – ADOPTA (ADaptive

technOlogy-enhanced Platform for eduTAinment). This

authoring tool is designed by using Java EE 5 platform

and provides inheritance mechanisms for learning

object metadata descriptions, metadata for semantic

ontology graphs, and good integration with instructor

tool for creation of adaptive courseware.

1. Introduction

Modern learning management platforms are

inconceivable without suitable authoring tools for

creation and maintenance of e-learning courseware.

Hypermedia systems with adaptation towards user

character address the same need but pose specific

requirements for content organization and metadata

description. This is straight following from the chief

goal of personalized and adaptive e-learning stated in

[1] as assuring of “e-learning content, activities and

collaboration, adapted to the specific needs and

influenced by specific preferences and context of the

student”. In order to achieve that goal, Adaptive

Hypermedia Systems (AHS) possess abilities for

provisioning of various forms of adaptation, such as

adaptive navigation, structural adaptation, adaptive

presentation and historical adaptation [2]. Dynamic

adaptation is used in different instructional scenarios

with content package adaptation facilitated by wide

usage of Web services [3], or is based on the idea that

different forms of learner model can be used to adapt

content and links of hypermedia pages to given user

[4].

The adaptability to individual is based on clean

separation of the learner model from the content model

and from the adaptation model, without narrative or

pedagogical model to be embedded in the authored

content or the adaptation engine [5]. The paper

describes software construction of an authoring tool of

e-learning courseware specially designed for ADOPTA

(ADaptive technOlogy-enhanced Platform for

eduTAinment) for building edutainment (education

plus entertainment) content for both universities and

industry. ADOPTA has been under development at

Sofia University, Bulgaria, since 2007 and already

provides prototypes of authoring and instructor tools

[6] for e-learning courseware design, with intention to

be extended for edutainment support. The adaptation

engine in still under development - it executes rules

controlling the adaptation process toward the learner

model.

With ADOPTA, the authoring process is strongly

separated from the instructor’s learning design and is

based on semantic ontology graphs - exported in

Ontology Web Language (OWL) [7] and inheritance

mechanisms for metadata descriptions of both the

learning objects and ontologies. For describing

metadata for learning objects (LOs) we use Learning

Object Metadata (LOM) [8], while for semantic

ontologies we rely on the new coming Ontology

Metadata Vocabulary (OMV) [9].

2. Conceptual model of system adaptability

We have proposed a new AHS model with main

goal to assure strong independence between leaner

profile, author content and pedagogical strategy [10].

Table 1 presents its structure together with explanation

of the most important characteristics. This is a new

hierarchical organizational model which refines the

established and widely used model - the AHAM

reference model [2].

Table 1. Tabular presentation of the structure
of the conceptual model

Learner Model - contains

information for the learner profile.

Depending on its meaning, it is stored

in Goals and Preferences, Learning

Style or Knowledge and Performance

sub-models.

Goals and

Preferences

Learning Style

Knowledge and

Performance

Adaptation Model - includes

description of each course storyboard

graph (in Narrative Storyboard sub-

model), metadata (such as link

annotations, exam thresholds, etc.) of

each narrative storyboard graph (in

Narrative Metadata sub-model) and

selection logic for passing over

particular graph (in Storyboard Rules

sub-model).

Narrative

Metadata

Narrative

Storyboard

Storyboard Rules

Domain Model - is responsible for

structuring of learning content. The

content is granulized in LOs, which

for theirs part are connected among

themselves in relevant knowledge

domain ontology. LOs and ontology

are described by their metadata (in

Content Metadata sub-model)

respectively according IEEE LOM

specification and Ontology Metadata

Vocabulary OMV standard

Ontology graph

Learning objects

Content Metadata

The Adaptation Engine communicates with each of the

three sub-models at first level in order to generate and

delivery to particular learner the most appropriate learning

content for her/him

Our model is divided into three sub-models,

strongly independent one from another. This

independence allows each one of the sub-models to be

easily changed, without this to affect the others. This

hierarchical model consists of two levels. At first level,

the model is based on a precise separation between

Learner, Domain and Adaptation sub-model, while at

second level each of these sub-models is divided into

three others sub models. Some of the sub-models may

be defined by XML schemas, such as learner

characteristics, content – by means of Sharable Content

Object Reference Model (SCORM), ontology (OWL),

metadata (LOM and OMV), and rules – in Semantic

Web Rule Language (SWRL) [11], for a better cross-

session interoperability and consistency.

As shown in table 1, in the Learner model we

separate goals and preferences from shown knowledge

and performance, which misses in other similar models

and allows to adapt content according learner’s

knowledge and performance and to personalize it

according learner’s goals and preferences. Other

difference between our model and similar ones is that

we add a new sub-model – the learning style. In this

sub-model, for each learner are defined her/his learning

style, such as activist, theorist, reflector, pragmatist.

This learning style can be polymorphic, which means

that it is presented by order quadruple, since usually a

particular learner is not fixed to a concrete style but

rather to several ones at different level.

The domain model is composed of content itself

(granulized in LOs according to the SCORM standard),

LO’s and ontologies’ metadata and semantic ontologies

organizing the content (LOs). There are supported

various types of LOs – not only narrative content but

also tasks, essay, assessment question, game, etc. Thus,

the content LOs are developed by the author and next

are placed by the course instructor on course pages.

Figure 1. A sample narrative storyboard graph

The adaptation model (AM) captures the semantics

of the pedagogical strategy employed by a course. It

includes support of course storyboard graphs. Fig. 1

presents a sample for narrative storyboard course graph

and it consists of narrative pages (with learning content

compound of LOs) such as Page 1, Page 2, control

points (CP) such as ConrolPage 1 and ControlPage 2

and so called work paths (WP) between them (CPs).

The instructor may define a weight of a WP for each

learning style. Therefore a particular working path

(WP) may be suitable for one or several learning styles.

The control points are used for assessment of current

knowledge and performance for a learner, by test

generation. This test is composes of questions

corresponding to the LOs in the pages, which the

learner is visited. The obtained assessment result is

used for update of WP weights.

The main benefit of the proposed model is in

assuring flexible adaptation of content delivery and

possibilities for effectiveness and easy expandability in

terms of adaptive content management and support. It

can be supported by different system architectures not

limiting application of various adaptation techniques,

such as adaptive content presentation, navigation

support and content selection.

3. Principal software platform architecture

3.1. General process workflow

The ADOPTA platform for adaptive e-learning

includes an authoring tool, an instructor tool, an

adaptive engine and a set of administration tools, all

communicating through a common repository as shown

in fig. 2. The content author is responsible for design of

learning materials (objects) by organizing them within

ontology with has-a and is-a relationships and, also, for

metadata about LOs (by IEEE LOM) and about

ontology itself (by OMV). The instructor uses the

instructor tool to design a course as a narrative

storyboard, by defining course pages and links between

them. For a content page, he/she has to drag-and-drop

at the page one or more learning objects from a proper

ontology defined by an author. The supervisor is

responsible for controlling the adaptation engine, e.g.

for doing start and stop of adaptation behavior,

tracking learner paths, etc. The administrator controls

all the users by means of administrative tools.

Finally, the learner follows a course by receiving

adaptive content and solving tests at control points. The

learner is supposed to start at the first control point by

filling an initial test about determining his/her learning

style. Next, he/she follows the work path proposed by

the adaptation engine but may opt to links to pages not

belonging to the path and, thus, to divert to another

work path. In such a case, they are always able to

return back to the last visited page of the proposed path

or, otherwise, to follow the new path until reaching a

control point. There, the learner has to solve a test

compiled by automatically selected questions about the

LOs he/she has passed through.

Figure 2. View of the general workflow

3.2. Overall platform architecture

The ADOPTA software architecture is composed by

three main layers – web clients, business layer and

persistence layer, as shown in fig. 3. The persistence

layer is presented by two sub-layers:

• Adopta Persistence Entities – ungrouped and

common for all the platform applications

• Persistence Session Beans – grouped into

specific and common, and used for

read/store/edit of entities. Within this sub-layer,

we have reused functionality for reading the

same objects, while the business logic is

specific for every module. Even in the case of

login, UserEntity is always read but there are

checked different roles.

The other layers are as follows:

• Business Session Beans – EJBs [12], which are

specific for each of the modules and contain its

business logic

• Communication layer (Web services) – provide

specific services for each of the modules.

• Web clients – represent web-based service

clients. The client layers are build with the

constantly growing popularity Flex technology

[13]. Among its other benefits, this technology

allows to generate easily web service client

classes and method stubs. This is exactly the

way the client consumes the published web

services. The nature of the Flex applications to

be run on the client side (browser/desktop)

dispenses the application server with the load of

rendering and manipulation the data.

Figure 3. General platform architecture

4. Software construction issues of the

authoring tool

4.1. Workflow of authoring e-learning

courseware

Authoring process includes definition of LOs, their

semantic organization as ontology graph (used for a

easy viewing and searching), and metadata about LOs

and ontology. The ontology graph allows multiple

inheritance and references from one LO to another.

The author may design the ontology using a top-

down, a bottom-up or a mixed approach. While node

relations of type is-a are defined directly within the

ontology graph, reference relations (usually known as

has-a relations) are defined while designing the

learning object. This constraint is especially dedicated

to force the author to allocate a hyperlink to the

referenced object within the content of the referring

object. LOs may be of various types such as conceptual

issue, project task, essay, etc. For anyone of these LOs,

the author may design one or several assessment LOs.

An assessment object is a QTI question [14] with

several answers of type one-of-many or many-of-many.

For each answer, the instructor defines a result value.

Questions may be only referred by other LOs of type

not being question, and cannot refer to other LOs.

Moreover, question LOs are not shown at course pages

but are used by the adaptation engine to build an

assessment tests at next CP.

Besides LOs and their structure, the author is

supposed to define metadata for LOs (by IEEE LOM)

and for the ontology. He/she may use a mechanism of

metadata inheritance from the root LO for the ontology

to its successors. If metadata records of each LO are

identical, then the author has to specify them only for

the root LO. Otherwise, the author has to describe only

the differences between metadata records of ancestor

LO and its successor (if there are any).

4.2. User interface of the authoring tool

One of the main goals of our authoring tool is to

provide comfortable, user-friendly and flexible

interface for ontology, LOs and its metadata

management. For this purpose we use Adobe Flex to

design and implement our authoring system interface. It

is an open source framework, which assures the

creation and maintenance of expressive web

applications.

Figure 4. A sample narrative storyboard graph

The authoring tool is based on reusing the already

existing authoring tool of ARCADE (Architecture for

Reusable Courseware Authoring and Delivery) e-

learning platform [15]. As far as it may run as a

standalone application, we have integrated its extended

version into our system. In this version, the learning

content is presented by LOs connected each other

within a semantic ontology graph (fig. 4) through links,

which can be of type has_a or is_a. LOs in accordance

of theirs structure may be:

• primitive (containing plain text, table, image,

audio, animation, video, external resources, or

links). This type of LOs has linear structure

• composite (aggregating other LOs). They are

with a hierarchical, tree structure.

As well, LOs may have various types in accordance of

their purpose – narrative content, task, assessment

question, etc.

The authoring tool’s interface provides various

functionalities for flexible visualization and

presentation of a ontology graph as zooming and

scaling, different layouts, multiple level view, etc.

Adobe Flex enables creating complex data

visualization interfaces for social networks, navigation

systems, taxonomies, etc. Moreover, the authoring tool

facilitates authors of learning content in the filling of

metadata for learning objects through assuring of

multiple inheritance – LOs lying down inherit LOM

from upper objects and may redefine it. Thus, the

author should define a full LOM description only for

the top LO class within the ontology graph, while for

the other LO (subclasses) this description will be

inherited with possibility for overriding any field. As

the most of contemporary authoring tools, our ones

supports export of ontology, LOs, and metadata in

appropriate formats.

4.3. Architectural view of the authoring tool

Conforming to the general system architecture, each

module the authoring tool consists of three layers-

persistence, business and web (or client) layer. Each of

the layers resolves its own specific problems and relies

only on the layer below.

Like the name shows, the persistence layer is

responsible for storing and editing of objects. As all

modern applications do, the communication with the

database is made throughout the Java Persistence API.

Sample Java Persistence entities are the

LearningObject, Ontology, etc. - all compliant to the

ORM standard.

The business layer is build by the latest EJB

technology [12]. The business logic itself resides on

stateless EJBs. The following EJB have been created

LoginBean, LOBean and OntologyBean. The

LoginBean is responsible for both the authentication

and authorization in the application. The LOBean and

the OntologyBean contain the business logic related to

a specific set of objects. Each bean exposes an

interface so the communication with each bean happens

via this interface throughout JNDI injection.

The next layer is build again on the basis of the EJB

3.0 architecture, although part of the business layer can

be relatively separated in a newly called

communication layer. This layer consists of web

services that act as a communication point between the

services client and the beans where the business logic

resides. The authoring tool publishes several services

that can be divided in four groups - login, learning

object related, ontology related and learning object

links related. All services are published as part of a

single WSDL file.

Figure 5. Architecture of the authoring tool

The last layer of the application is the web layer.

Having in mind the benefits of SOA the web layer may

be more precisely called with the more general name-

client layer.

5. Related works

Most of the older authoring tools such as InterBook

and HyperBook [16] are aimed at creating an entire

course with pre-defined structure and pedagogical

strategy. These applications do not use learning objects

and structuring of learning materials in ontologies.

Many contemporary authoring tools have focused their

efforts in standardization of content organization and

its reuse. Therefore they organized its training

materials in learning object. Such systems are WebCT,

Learning Object Creator, and ATutor [17]. Unlike

these applications, our authoring tool separates the

content from the pedagogical strategy, which is not

defined by it but by the instructional tool. Moreover,

we support inheritance mechanism for defining LOM

and very convenient interface created by Flex

technology.

6. Conclusions

Adaptive e-learning platforms continue needing of

appropriate authoring tools facilitating instructional

design of adaptive courseware. The paper presented

important issues of software construction of the

authoring tool of ADOPTA platform for adaptive

edutainment. The software architecture of ADOPTA

separates the process of course material authoring from

instructional design, in order to reuse learning

courseware and to facilitate effective construction of

narrative storyboards. It makes sense, as the roles of

the author and the instructor are different, although

they may be played by the same teacher.

Moreover, the system architecture discussed here

allows three separated and independent each other

applications – the authoring and the instructor tools and

the adaptation engine for courseware delivery and

assessment – to be deployed and to run on different

machines. Each one of the applications contains

persistence, business and web layer but only the

persistence layer is the same. Thus, even in cases of

crash of one of the three applications, others are able to

run independently. The EJB remote interface is used in

order for deployment of a single persistence layer

common for these applications, which allows

centralized management and easy version control.

7. Acknowledgements

This work was partially supported by the European

Social Fund and the Bulgarian Ministry of Education

and Science under the Operation programme “Human

Resources Development”, Grant BG051PO001/07/3.3-

02/7.

8. References

[1] Dagger, D., Wade, V. & Conlan, O., Personalization

for All: Making Adaptive Course Composition Easy. Special

issue of the Educational Technology and Society journal,

IEEE IFETS, 2005.

[2] De Bra P. at al. AHAM: A Dexter-based Reference

Model for adaptive Hypermedia. Proc. of the ACM

Conference on Hypertext and Hypermedia, 1999, pp. 147-

156.

[3] Leune, K., W.J. van den Heuvel, Papazoglou M.P.

Exploring a Multi-Faceted Framework for SOC: How to

develop secure web-service interactions? Proc. of the 14th

Int. Workshop on RIDE, USA, 2004, pp. 485-501.

[4] Díaz, P., Sicilia, M.A. and Aedo, I. Evaluation of

Hypermedia Educational Systems: Criteria and Imperfect

Measures. Proc. of the Int. Conf. on Computers in Education,

USA, 2002, pp. 621-626.

[5] Vassileva D., Bontchev B. Self adaptive hypermedia

navigation based on learner model characters, Proc. of

IADAT-e2006, Barcelona, Spain, 2006, pp.46-52.

[6] Vassileva, D., Bontchev, B. and Grigorov, S.,

Mastering Adaptive Hypermedia Courseware, Proc. of 6th

Int. Conf. on Emerging eLearning Technologies and

Applications ICETA'2008.

[7] Moreira D., M. Musen. OBO to OWL: a protege OWL

tab to read/save OBO ontologies, In Bioinformatics, Vol. 23,

No. 14, 2007, pp. 1868-1870.

[8] Krull, G. An investigation of the development and

adoption of educational metadata standards for the

widespread use of learning objects, Master Thesis, Rhodes

University, November 2004.

[9] Hartmann, J. et al. Ontology Metadata Vocabulary and

Applications. Proc. of Int. Conf. on Ontologies, Databases

and Applications of Semantics, Workshop on Web Semantics

(SWWS), Springer, October 2005, pp.906-915.

[10] Vassileva D., Bontchev B.: Adaptation engine

construction based on formal rules, Proc. of CSEDU 2009,

ISBN 978-989-8111-82-1, Vol.1, Lisbon, Portual, March 23-

26, 2009, pp.327-332.

[11] Mei, J. and Boley, H. Interpreting SWRL Rules in RDF

Graphs. In Electr. Notes Theor. Comput. Sci., Vol. 151(2),

2006, pp. 53-69.

[12] J. Wang at al. Constructing an EJB application in a

WFMS, Proc. 26th Computer Software and Applications

Conference, 2002, ISSN: 0730-3157 , pp. 284- 286.

[13] Coenraets C. Extend AJAX with Adobe Flex,

Published by SYS-CON Media, Real-World AJAX Seminar,

New York City, USA, June 5-6, 2007,

http://www.soaworld2007.com/node/226335.

[14] Radenkovic, S. et al. A QTI Metamodel, Proc. of the

Int. Multiconference on Computer Science and Information

Technology, ISSN 1896-7094, Volume 2, Wisła, Poland,

2007, pp. 1123 – 1132.

[15] Bontchev B., Vassileva D. “Internet Authoring Tool

for E-learning Courseware”, Proc. of the 7th WSEAS Int.

Conf. on Computers. Corfu, Greece, 2003, pp. 305-311.

[16] P. Brusilovsky, J. Eklund, InterBook: an Adaptive

Tutoring System,. UniServe Science News, Volume 12,

March, 1999.

[17] Esmahi, L. at al. An Essay in E-learning Tools

Categorization, Proc. of "Computers and Advanced

Technology in Education", Cancun, Mexico, 2002, pp.355-

218.

