
Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 1 of 101

University of Sofia “St Kliment Ohridski”

Faculty of Mathematics and Informatics

Department: Information technologies

Master thesis

“Process and realization of SOA

centralized system”

Student: Velichko Ginev Sarev
MSc program: Computer science – Software Engineering

FN: М21608

Scientific supervisor: Silvia Ilieva, Assoc. Prof., PhD

Sofia, 2007

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 2 of 101

CONTENTS

1 INTRODUCTION ... 4

1.1 GOALS .. 4
1.2 BENEFIT OF THE MASTER THESIS .. 5
1.3 STRUCTURE OF THE MASTER THESIS .. 5

2 CONCEPT OF SOA SYSTEMS .. 7

2.1 INTRODUCTION TO SOA .. 7
2.2 WHY SOA? ... 9
2.3 BENEFIT OF USAGE ... 10
2.4 REQUIREMENTS FOR A SOA .. 11

3 METHODOLOGY AND ARCHITECTURE OF SOA SYSTEMS 12

3.1 RUP FOR SOMA ... 12
3.1.1 Method Integration Overview .. 13
3.1.2 Phases .. 14
3.1.3 RUP Workflows ... 15
3.1.4 The Best Practices of RUP ... 19

3.2 MODEL-DRIVEN DEVELOPMENT OF SOA .. 21
3.2.1 SOA Service Metamodel .. 22
3.2.2 Process-Oriented Methodology for Developing an SOA 27

4 COMPONENT BUSINESS MODEL ... 29

4.1.1 CBM Framework ... 29
4.1.2 Business Components .. 30
4.1.3 CBM Strategy road map ... 31

5 BUSINESS PROCESSES AND MODELING 37

6 SERVICE ORIENTED MODELING AND ARCHITECTURE 38

6.1.1 Service Identification ... 39
6.1.2 Component Specification .. 41
6.1.3 Service Specification .. 42
6.1.4 Service Realization ... 43

7 SOA SOLUTION STACK ... 44

7.1.1 SOA solution stack assumptions .. 45
7.1.2 Layers of the SOA reference architecture 46

8 IBM BASED TOOLS FOR DEVELOPMENT OF SOA PROJECTS
 57

8.1 SOA-IF ... 57
8.2 WEBSPHERE BUSINESS MODELER ... 57
8.3 WEBSPHERE PROCESS SERVER .. 58
8.4 UDDI REGISTRY .. 59

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 3 of 101

8.5 WS REGISTRY AND REPOSITORY ... 60
8.6 WEBSPHERE ESB .. 60
8.7 WEBSPHERE MESSAGE BROKER ... 61
8.8 WEBSPHERE INTEGRATION DEVELOPER ... 61

9 PRACTICE SOLUTION ... 63

9.1 PROBLEM STATEMENT AND CBM ... 63
9.2 SOLUTION OVERVIEW ... 65
9.3 SOMA .. 66
9.3.1 Process decomposition ... 68
9.3.2 Service identification ... 68
9.3.3 Service specification ... 71

9.4 SERVICE COMPONENTS (SCA) .. 77
9.4.1 Business Processes ... 78
9.4.2 Person Registration .. 79
9.4.3 Administer Claim ... 80
9.4.4 Claim ragistration .. 81

10 CONCLUSION ... 83

10.1 SOA SOLUTIONS OVERVIEW .. 83
10.2 POSSIBLE FEATURE WORK ... 84

ABBREVIATIONS .. 86

REFERENCES .. 87

APPENDIX A – RUN ADMINISTER CLAIM PROCESS 88

APPENDIX B – SCA COMPONENTS IMPLEMENTATION 90

APPENDIX C – DB2 CONNECTOR .. 92

1 Introduction

In the last twenty years the software industry has grown tremendously. It has
conquered and occupied every part of human lives – business, economics,
communications, health, science and entertainment.
The software products become more and more complex, as well as more and
more critical to everyday life. The public needs for quality and flexible software
products of all kind of areas are constantly increasing.
The need to respond to changing business demands with quality and flexible IT
solutions has led many businesses to Service-Oriented Architectures (SOAs).
SOA is an IT framework that combines individual business functions and
processes, called services, to implement sophisticated business applications and
processes. SOA is an approach to IT that considers business processes as
reusable components or services that are independent of applications and the
computing platforms on which they run. It allows you to design solutions as
assemblies of services in which the assembly description is a managed, first-
class aspect of the solution, and hence, amenable to analysis, change, and
evolution. You can then view a solution as a choreographed set of service
interactions. The idea of viewing enterprise solutions as federations of services
connected via well-specified contracts that define service interfaces is gaining
widespread support. The ultimate goal of adopting an SOA is to achieve flexibility
for the business and within IT.

1.1 Goals

The goal of this master thesis is to summarize the process and to demonstrate
the realization of SOA centralized system and its methodology. It will start with
concept of SOA system, after that the thesis continues with primary three steps
that covers every SOA project:

• CBM – Component Business Model

• SOMA – Service Oriented Modeling Architecture

• SOA – Service Oriented Architecture

Figure 1 SOA approach

The scope of this master thesis will covers also prove of concept project which
will presents practical and realization of SOA centralized systems.
Tasks that should be performed to reach the goal:

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 5 of 101

• To introduce the emerging Service Oriented Architecture (SOA) concepts

• To summarize the Methodology of SOA

• To describe the Business Model and Architecture of SOA systems

• To explain of the SOA tools in term of SOA solution stack

• To create the SOA project in order to apply the described theory in
practice

1.2 Benefit of the master thesis

During the evolution of IT technologies the world go through many technologies
and best practices such us procedure programming, object oriented
programming and etc. Now the most popular programming in the world is SOA. It
provides the ability to develop the software and think in terms of services. The
base things in SOA programming are services. The services give us business
and technical benefits such us reusability for business and technical services,
well known protocols to access these services. The most popular services in
SOA are web services which can be consumed trough soap/http protocol.
However when we talk for services into SOA it doesn’t mean that all the services
are web services. There are several types of well know bindings in order to
consume SOA services. These bindings are:

• Soap/http binding

• JMS binding

• SCA binding

• Soap/jms binding
These services are basis for SOA programming. They are orchestrated by
technical business processes which fallow real business processes that are used
from the customers. When we deliver such kind of IT infrastructure and software
to our clients they will be flexible enough to build their own business processes,
rules, entities and etc.
This master thesis illustrates the IBM methodology and could be used as a
guideline that needs to be followed during each SOA project.

1.3 Structure of the master thesis

The master thesis consists of six mainly chapters – Introduction, SOA Concept,
SOA methodology and architecture, IBM tools for SOA development, Prove of
concept and Conclusion:

• Chapter 1 “Introduction” – gives short description of SOA

• Chapter 2 “Concept of SOA system” – describes why SOA is important
and what the benefit of its usage is.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 6 of 101

• Chapter 3 “Methodology and architecture of SOA system” –
describes Rational Unified Process (RUP) for SOMA and Model-Driven
development of SOA systems

• Chapter 4 “Component Business Model” - describes methodologies
and methods which can be successfully applied to each SOA project.

• Chapter 5 “Business processes and modeling” – describes business
architecture and modeling.

• Chapter 6 “Service oriented modeling and architecture” – describes
SOMA method.

• Chapter 7 “SOA solution stack” – describes different layer of SOA
centralized system.

•

• Chapter 8 “IBM based tools for development of SOA projects” – this
section covers the most popular IBM tools used for SOA projects.

• Chapter 9 “Demonstration through practical solution” – developing
SOA solution based on methodology and tools that are mentioned above.

• Chapter 10 “Conclusion” – final conclusion and descriptions of
possibilities for future development

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 7 of 101

2 Concept of SOA systems
Architecture is not tied to a specific technology. It may be implemented using a
wide range of technologies, including SOAP, RPC, DCOM, CORBA and Web
Services. SOA can be implemented using one or more of these protocols and, for
example, might use a file system mechanism to communicate data conforming to
a defined interface specification between processes conforming to the SOA
concept. The key is independent services with defined interfaces that can be
called to perform their tasks in a standard way, without the service having
foreknowledge of the calling application, and without the application having or
needing knowledge of how the service actually performs its tasks.

SOA can also be considered as a style of information systems architecture that
enables the creation of applications that are built by combining loosely coupled
and interoperable services. These services inter-operate based on a formal
definition (or contract, e.g., WSDL) that is independent of the underlying platform
and programming language. The interface definition hides the implementation of
the language-specific service. SOA-based systems can therefore be independent
of development technologies and platforms (such as Java, .NET etc). Services
written in C# running on .NET platforms and services written in Java running on
Java EE platforms, for example, can both be consumed by a common composite
application (or client). Applications running on either platform can also consume
services running on the other as Web services, which facilitates reuse. Many
COBOL legacy systems can also be wrapped by a managed environment and
presented as a software service. This has allowed the useful life of many core
legacy systems to be extended indefinitely no matter what language they were
originally written in. SOA can support integration and consolidation activities
within complex enterprise systems, but SOA does not specify or provide a
methodology or framework for documenting capabilities or services.

High-level languages such as BPEL and specifications such as WS-CDL and
WS-Coordination extend the service concept by providing a method of defining
and supporting orchestration of fine grained services into more coarse-grained
business services, which in turn can be incorporated into workflows and business
processes implemented in composite applications or portals.

2.1 Introduction to SOA

Service Oriented Architecture (SOA) is an evolution of distributed computing and
modular programming. SOAs build applications out of software services.
Services are relatively large, intrinsically unassociated units of functionality,
which have no calls to each other embedded in them. They typically implement
functionalities most humans would recognize as a service, such as filling out an
online application for an account, viewing an online bank statement, or placing an
online book or airline ticket order. Instead of services embedding calls to each
other in their source code, protocols are defined which describe how one or more
services can talk to each other. This architecture then relies on a business

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 8 of 101

process expert to link and sequence services, in a process known as
orchestration, to meet a new or existing business system requirement.

Relative to earlier attempts to promote software reuse via modularity of functions,
or by use of predefined groups of functions known as classes, SOA's atomic level
objects are 100 to 1,000 times larger, and are associated by an application
designer or engineer using orchestration. In the process of orchestration,
relatively large chunks of software functionality (services) are associated in a
non-hierarchical arrangement (in contrast to a class's hierarchies) by a software
engineer, or process engineer, using a special software tool which contains an
exhaustive list of all of the services, their characteristics, and a means to record
the designer's choices which the designer can manage and the software system
can consume and use at run-time.

Underlying and enabling all of this is metadata which is sufficient to describe not
only the characteristics of these services, but also the data that drives them. XML
has been used extensively in SOA to create data which is wrapped in a nearly
exhaustive description container. Analogously, the services themselves are
typically described by WSDL, and communications protocols by SOAP. Whether
these description languages are the best possible for the job, and whether they
will remain the favorites going forward, is at present an open question. What is
certain is that SOA is utterly dependent on data and services that are described
using some implementation of metadata which meets two criteria. The metadata
must be in a form which software systems can consume to dynamically configure
to maintain coherence and integrity, and in a form which system designers can
understand and use to manage that metadata.

The goal of SOA then is to allow fairly large chunks of functionality to be strung
together to form ad-hoc applications which are built almost entirely from existing
software services. The larger the chunks the fewer the interface points required
to implement any given set of functionality. This is at odds with very large chunks
of functionality which are not granular enough to be easily reused. Since each
interface brings with it some amount of processing overhead, there is a
performance consideration in choosing the granularity of services. The great
promise of SOA though, is that in this world, the marginal cost of creating the nth
application is zero, as all of the software required already exists to satisfy the
requirements of other applications. Only orchestration is required to produce a
new application.

The key here is there are no interactions between the chunks which are specified
within the chunks themselves (where functions specify their calls to other
functions or classes specify ownership of their member functions as well as calls
as part of the source code). By contrast, the interaction of services, all of whom
are unassociated peers, is specified by humans in a relatively ad-hoc way with
the intent du jour driven by newly emergent business requirements. Again we see
the need for services to be much larger units of functionality than traditional

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 9 of 101

functions or classes, lest the sheer complexity of thousands of such granular
objects overwhelm the application designer. The services themselves continue to
be made using classical languages like Java, C#, C++, C or COBOL.

SOA services are therefore loosely coupled, in contrast, for example, to the
functions a linker binds together to form an executable, a DLL, or an assembly.
SOA services also run in "safe" wrappers such as the .NET environment, which
manages memory allocation and reclamation, allows ad-hoc and late binding,
and some degree of indeterminate data typing.

It is important to note that increasingly there are third party software companies
which offer software services for a fee. Going forward, many SOA systems may
be composed of services, only some of which were created in-house. This has
the potential to spread costs over many customers, and customer uses, and
promotes standardization both in and across industries. The travel industry in
particular now has a well-defined and documented set of services, and the data
they consume, sufficient to allow any reasonably competent software engineer to
create travel agency software using entirely off the shelf software services. Other
industries, such as the finance industry, are also making significant progress in
this direction.

There is no widely agreed upon definition of SOA other than its literal translation.
It is an architecture that relies on service-orientation as its fundamental design
principle. In an SOA environment independent services can be accessed without
knowledge of their underlying platform implementation.[2] These concepts can be
applied to business, software and other types of producer/consumer systems.

2.2 Why SOA?

Enterprise architects believe that SOA can help businesses respond more quickly
and cost-effectively to changing market conditions. This style of architecture
promotes reuse at the macro (service) level rather than micro (classes) level. It
can also simplify interconnection to - and usage of - existing IT (legacy) assets.
In some respects, SOA can be considered an architectural evolution rather than
a revolution and captures many of the best practices of previous software
architectures. In communications systems, for example, there has been little
development of solutions that use truly static bindings to talk to other equipment
in the network. By formally embracing a SOA approach, such systems are better
positioned to stress the importance of well-defined, highly inter-operable
interfaces.
Some have questioned whether SOA is just a revival of modular programming
(1970s), event-oriented design (1980s) or interface/component-based design
(1990s)[citation needed]. SOA promotes the goal of separating users
(consumers) from the service implementations. Services can therefore be run on
various distributed platforms and be accessed across networks. This can also
maximize reuse of services

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 10 of 101

2.3 Benefit of usage

The following guiding principles define the ground rules for development,
maintenance, and usage of the SOA:

• Reuse, granularity, modularity, compos ability, componentization, and
interoperability

• Compliance to standards (both common and industry-specific)

• Services identification and categorization, provisioning and delivery, and
monitoring and tracking

The following specific architectural principles for design and service definition
focus on specific themes that influence the intrinsic behavior of a system and the
style of its design:

• Service Encapsulation - A lot of existing web-services are consolidated to
be used under the SOA Architecture. Many a times, such services have
not been planned to be under SOA.

• Service loose coupling - Services maintain a relationship that minimizes
dependencies and only requires that they maintain an awareness of each
other

• Service contract - Services adhere to a communications agreement, as
defined collectively by one or more service description documents

• Service abstraction - Beyond what is described in the service contract,
services hide logic from the outside world

• Service reusability - Logic is divided into services with the intention of
promoting reuse

• Service compos ability - Collections of services can be coordinated and
assembled to form composite services

• Service autonomy – Services have control over the logic they encapsulate

• Service optimization – All else equal, high-quality services are generally
considered preferable to low-quality ones

• Service discoverability – Services are designed to be outwardly descriptive
so that they can be found and assessed via available discovery
mechanisms

In addition, the following factors should also be taken into account when defining
a SOA implementation:

• SOA Reference Architecture covers the SOA Reference Architecture,
which provides a worked design of an enterprise-wide SOA
implementation with detailed architecture diagrams, component
descriptions, detailed requirements, design patterns, opinions about
standards, patterns on regulation compliance, standards templates etc.

• Life cycle management SOA - Introduction to Services Lifecycle
introduces the Services Lifecycle and provides a detailed process for

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 11 of 101

services management though the service lifecycle, from inception through
to retirement or repurposing of the services. It also contains an appendix
that includes organization and governance best practices, templates,
comments on key SOA standards, and recommended links for more
information.

• Efficient use of system resources

• Service maturity and performance

2.4 Requirements for a SOA

In order to efficiently use a SOA, one must meet the following requirements:

• Interoperability between different systems and programming languages -
The most important basis for a simple integration between applications on
different platforms is a communication protocol, which is available for most
systems and programming languages.

• Clear and unambiguous description language - To use a service offered
by a provider, it is not only necessary to be able to access the provider
system, but the syntax of the service interface must also be clearly defined
in a platform-independent fashion.

• Retrieval of the service - To allow a convenient integration at design time
or even system run time, a search mechanism is required to retrieve
suitable services. The services should be classified as computer-
accessible, hierarchical or taxonomies based on what the services in each
category do and how they can be invoked.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 12 of 101

3 Methodology and Architecture of SOA systems
In this chapter we will concentrate mainly on two different methods for
development of SOA solutions:

• RUP for SOMA

• Model-Driven Development

3.1 RUP for SOMA

The roots of Rational Process go back to the original spiral model of Barry
Boehm. The Rational Approach was developed at Rational Software in the 1980s
and 1990s.
In 1995 Rational Software acquired the Swedish Company Objectory AB. The
Rational Unified Process was the result of the merger of the Rational Approach
and the Objectory process developed by Objectory founder Ivar Jacobson. The
first results of that merger was the Rational Objectory Process, designed to an
Objectory-like process, but suitable to wean Objectory users to the Rational Rose
tool. When that goal was accomplished, the name was changed. The first version
of the Rational Unified Process, version 5.0, was released in 1998. The chief
architect was Philippe Kruchten.
RUP is not a single concrete prescriptive process, but rather an adaptable
process framework, intended to be tailored by the development organizations
and software project teams that will select the elements of the process that are
appropriate for their needs.
The latest version of RUP 7.1 that incorporates additional information on building
SOA-based solutions was released with the announcement of the IBM Rational
Method Composer. This information is a combination of SOA material that was
part of earlier versions of RUP, and a lot of content from IBM’s service-oriented
modeling and architecture technique is used by IBM consultants. Actually there
were two updates on RUP before. The current update of RUP 7.1 is focused
upon Service-Oriented Architecture (SOA). This update represents a major
milestone in the RUP guidance around SOA as it provides a unified method
combining previous RUP for SOA content with content from the IBM Global
Business Services (GBS) Service-Oriented Modeling and Architecture (SOMA)
method. The SOMA method has been successfully used by IBM in a number of
client engagements, and while it was initially developed leveraging the existing
IBM Global Services Method (GS Method) it was felt that in the area of SOA both
IBM and our customers would benefit more from a unified method approach than
having two separate methods. When looking at the two methods it is clear that
the authors had very similar aims in mind and structured the methods in similar
ways - in fact the two teams did meet in 2004 and made some changes to both
methods to align terminology. While this alignment is not necessarily surprising
as both methods are focused on the pragmatic activities of developing a service-
oriented solution it was noted that a generic framework could be extracted that
would be able to describe both methods at a high level.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 13 of 101

3.1.1 Method Integration Overview

The following diagram (fig. 2) illustrates the framework mentioned above. It
represents a method neutral set of activities required of any process for the
development of service-oriented solutions. Now, this diagram is significantly
simplified from the content of either method but clearly represents the key
activities of both methods -- Service Identification, Service Specification and
Service Realization. In the area of work products, it was clear that there was a lot
of conceptual alignment. Similar work products were required with similar roles
and stakeholders, but in some cases were realized differently; for example, as
either a UML model or a Word document.

 Figure 2 SOMA approach

Rational Unified Process 7.1 has the scope of introducing guidance for the
Software Architect and Designer in developing a Service Model, a model
representing a portfolio of services that can be used as the basis for
implementation tasks already in the RUP. It is also our intent to describe the
connection between business modeling and the services model. Many Service-
Oriented Architecture (SOA) projects use business-process models in
understanding their business, functional requirements, and the services required
to support a process.

The scope of this update was addressed briefly in the introduction, but here are
the set of requirements and scoping statements used to guide the project.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 14 of 101

• Leverage the existing RUP; in this case it means that where possible
we should describe new tasks and work products in relation to existing
ones in the RUP and not unnecessarily add new concepts. Also, new
elements should be added such that they fit into the overall flow of the
RUP.

• Look forward to future tool capabilities; although the RUP is not tool
dependent, it should be understood that there is no point in developing
content in areas where no tooling will ever exist and then, there is no
need to not write a topic because the tool is not in the market but we
can expect it to be soon.

• Integration of other IBM experience in SOA; it is clear that other groups
within IBM have experience that can be leveraged; harvested; and
added to the concepts, guidelines, and practice we are introducing.

• Scope changes to Analysis & Design; we have looked at the literature
that describes the application of SOA to business design and the
implication of SOA on business models, operational organization, and
business integration. We have also looked at the differences SOA
tends to make on implementation, deployment, and operational
management. This is too broad a scope for the first iteration so we have
only focused on architecture and design issues.

• Deliver a foundation; this is the first iteration. We expect that additional
guidance can be added to the framework presented here and the
connection made between this content and the rest of the RUP in
subsequent iterations.

• Look to changes that need to be made in the base, but defer to future
release; we know that some concepts we introduce would fit better with
terminology or other minor changes to the base RUP. While it would be
desirable to change the RUP, that would have wider implications and
would take far longer.

3.1.2 Phases

The RUP lifecycle is an implementation of the spiral model. It has been created
by assembling the content elements into semi-ordered sequences. Consequently
the RUP lifecycle is available as a work breakdown structure, which could be
customized to address the specific needs of a project. The RUP lifecycle
organizes the tasks into phases and iterations.
A project has four phases usually, which are described below:

• Inception phase - The overriding goal of the inception phase is to
achieve concurrence among all stakeholders on the lifecycle objectives
for the project. The inception phase is of significance primarily for new
development efforts, in which there are significant business and
requirements risks which must be addressed before the project can
proceed. For projects focused on enhancements to an existing system,

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 15 of 101

the inception phase is more brief, but is still focused on ensuring that
the project is both worth doing and possible to do.

• Elaboration phase - The goal of the elaboration phase is to baseline
the architecture of the system to provide a stable basis for the bulk of
the design and implementation effort in the construction phase. The
architecture evolves out of a consideration of the most significant
requirements (those that have a great impact on the architecture of the
system) and an assessment of risk. The stability of the architecture is
evaluated through one or more architectural prototypes.

• Construction phase – The goal of the construction phase is clarifying
the remaining requirements and completing the development of the
system based upon the baseline architecture. The construction phase
is in some sense a manufacturing process, where emphasis is placed
on managing resources and controlling operations to optimize costs,
schedules, and quality. In this sense the management mindset
undergoes a transition from the development of intellectual property
during inception and elaboration, to the development of deployable
products during construction and transition.

• Transition phase - The focus of the Transition Phase is to ensure that
software is available for its end users. The Transition Phase can span
several iterations, and includes testing the product in preparation for
release, and making minor adjustments based on user feedback. At this
point in the lifecycle, user feedback should focus mainly on fine tuning
the product, configuring, installing and usability issues, all the major
structural issues should have been worked out much earlier in the
project lifecycle.

Each of these four phases can be spitted into sub-phases, but this decision
depends of project milestones and development.

3.1.3 RUP Workflows

There are nine core process workflows (disciplines) in the Rational Unified
Process, which represent a partitioning of all workers and activities into logical
groupings (fig. 3).

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 16 of 101

Figure 3 RUP phases

The nine core process workflows will be shortly presented now.

Workflows are revisited again and again throughout the lifecycle. The actual
complete workflow of a project interleaves these nine core workflows, and
repeats them with various emphasis and intensity at each iteration.

Business Modeling
One of the major problems with most business engineering efforts is that the
software engineering and the business engineering community do not
communicate properly with each other. This leads to that the output from
business engineering is not used properly as input to the software development
effort, and vice versa. The Rational Unified Process addresses this by providing a
common language and process for both communities, as well as showing how to
create and maintain direct traceability between business and software models. In
Business Modeling we document business processes using so called business
use cases. This assures a common understanding among all stakeholders of
what business process needs to be supported in the organization. The business
use cases are analyzed to understand how the business should support the
business processes. This is documented in a business object-model. Many
projects may choose not to do business modeling.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 17 of 101

Requirements
The goal of the Requirements workflow is to describe what the system should do
and allows the developers and the customer to agree on that description. To
achieve this, we elicit, organize, and document required functionality and
constraints; track and document tradeoffs and decisions. A Vision document is
created, and stakeholder needs are elicited. Actors are identified, representing
the users, and any other system that may interact with the system being
developed. Use cases are identified, representing the behavior of the system.
Because use cases are developed according to the actor's needs, the system is
more likely to be relevant to the users.

Analysis & Design
The goal of the Analysis & Design workflow is to show how the system will be
realized in the implementation phase. Analysis & Design results in a design
model and optionally an analysis model. The design model serves as an
abstraction of the source code; that is, the design model acts as a 'blueprint' of
how the source code is structured and written. The design model consists of
design classes structured into design packages and design subsystems with
well-defined interfaces, representing what will become components in the
implementation. It also contains descriptions of how objects of these design
classes collaborate to perform use cases. The design activities are centered
around the notion of architecture. The production and validation of this
architecture is the main focus of early design iterations. Architecture is
represented by a number of architectural views. These views capture the major
structural design decisions. In essence, architectural views are abstractions or
simplifications of the entire design, in which important characteristics are made
more visible by leaving details aside. The architecture is an important vehicle not
only for developing a good design model, but also for increasing the quality of
any model built during system development.

Implementation
The purposes of implementation are:

• To define the organization of the code, in terms of implementation
subsystems organized in layers.

• To implement classes and objects in terms of components (source files,
binaries, executables, and others).

• To test the developed components as units.

• To integrate the results produced by individual implementers (or teams),
into an executable system.

The system is realized through implementation of components. The Rational
Unified Process describes how you reuse existing components, or implement
new components with well defined responsibility, making the system easier to
maintain, and increasing the possibilities to reuse.

Test
The purposes of testing are:

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 18 of 101

• To verify the interaction between objects.

• To verify the proper integration of all components of the software.

• To verify that all requirements have been correctly implemented.

• To identify and ensure defects are addressed prior to the deployment of
the software.

The Rational Unified Process proposes an iterative approach, which means that
you test throughout the project. This allows you to find defects as early as
possible, which radically reduces the cost of fixing the defect. Test are carried out
along three quality dimensions reliability, functionality, application performance
and system performance. For each of these quality dimensions, the process
describes how you go through the test lifecycle of planning, design,
implementation, execution and evaluation.
Strategies for when and how to automate test are described. Test automation is
especially important using an iterative approach, to allow regression testing at
then end of each iteration, as well as for each new version of the product.

Deployment
The purpose of the deployment workflow is to successfully produce product
releases, and deliver the software to its end users. It covers a wide range of
activities including:

• Producing external releases of the software.

• Packaging the software.

• Distributing the software.

• Installing the software.

• Providing help and assistance to users.
In many cases, this also includes activities such as:

• Planning and conduct of beta tests.

• Migration of existing software or data.

• Formal acceptance.
Although deployment activities are mostly centered around the transition phase,
many of the activities need to be included in earlier phases to prepare for
deployment at the end of the construction phase.

Project Management
Software Project Management is the art of balancing competing objectives,
managing risk, and overcoming constraints to deliver, successfully, a product
which meets the needs of both customers (the payers of bills) and the users. The
fact that so few projects are unarguably successful is comment enough on the
difficulty of the task.
This workflow focuses mainly on the specific aspect of an iterative development
process. Our goal with this section is to make the task easier by providing:

• A framework for managing software-intensive projects.

• Practical guidelines for planning, staffing, executing, and monitoring
projects.

• A framework for managing risk.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 19 of 101

It is not a recipe for success, but it presents an approach to managing the project
that will markedly improve the odds of delivering successful software.

Configuration & Change Management
In this workflow we describe how to control the numerous artifacts produced by
the many people who work on a common project. This workflow provides
guidelines for managing multiple variants of evolving software systems, tracking
which versions are used in given software builds, performing builds of individual
programs or entire releases according to user-defined version specifications, and
enforcing site-specific development policies.
We describe how you can manage parallel development, development done at
multiple sites, and how to automate the build process. This is especially
important in an iterative process where you may want to be able to do builds as
often as daily, something that would become impossible without powerful
automation. We also describe how you can keep an audit trail on why, when and
by whom any artifact was changed. This workflow also covers change request
management, i.e. how to report defects, manage them through
their lifecycle, and how to use defect data to track progress and trends.

Environment
The purpose of the environment workflow is to provide the software development
organization with the software development environment—both processes and
tools—that are needed to support the development team. This workflow focuses
on the activities to configure the process in the context of a project. It also focus
on activities to develop the guidelines needed to support a project. A step-by-step
procedure is provided
Describing how you implement a process in an organization.
The environment workflow also contains a Development Kit providing you with
the guidelines, templates and tools necessary to customize the process.

3.1.4 The Best Practices of RUP

The Rational Unified Process describes how to effectively deploy commercially
proven approaches to software development for software development teams.
These are called “best practices” not so much because you can precisely
quantify their value, but rather, because they are observed to be commonly used
in industry by successful organizations. The Rational Unified Process provides
each team member with the guidelines, templates and tool mentors necessary for
the entire team to take full advantage of among others the following best
practices:

• Develop Software Iteratively - Given today’s sophisticated software
systems, it is not possible to sequentially first define the entire problem,
design the entire solution, build the software and then test the product at
the end. An iterative approach is required that allows an increasing
understanding of the problem through successive refinements, and to
incrementally grow an effective solution over multiple iterations. The

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 20 of 101

Rational Unified Process supports an iterative approach to development
that addresses the highest risk items at every stage in the lifecycle,
significantly reducing a project’s risk profile. This iterative approach helps
you attack risk through demonstrable progress - frequent, executable
releases that enable continuous end user involvement and feedback.
Because each iteration ends with an executable release, the development
team stays focused on producing results, and frequent status checks help
ensure that the project stays on schedule. An iterative approach also
makes it easier to accommodate tactical changes in requirements,
features or schedule.

• Manage Requirements -The Rational Unified Process describes how to
elicit, organize, and document required functionality and constraints; track
and document tradeoffs and decisions; and easily capture and
communicate business requirements. The notions of use case and
scenarios proscribed in the process has proven to be an excellent way to
capture functional requirements and to ensure that these drive the design,
implementation and testing of software, making it more likely that the final
system fulfills the end user needs. They provide coherent and traceable
threads through both the development and the delivered system.

• Use Component-based Architectures - The process focuses on early
development and baselining of a robust executable architecture, prior to
committing resources for full-scale development. It describes how to
design a resilient architecture that is flexible, accommodates change, is
intuitively understandable, and promotes more effective software reuse.
The Rational Unified Process supports component-based software
development. Components are non-trivial modules, subsystems that fulfill
a clear function. The Rational Unified Process provides a systematic
approach to defining an architecture using new and existing components.

• Visually Model Software - The process shows you how to visually model
software to capture the structure and behavior of architectures and
components. This allows you to hide the details and write code using
“graphical building blocks.” Visual abstractions help you communicate
different aspects of your software; see how the elements of the system fit
together; make sure that the building blocks are consistent with your code;
maintain consistency between a design and its implementation; and
promote unambiguous communication.

• Verify Software Quality - Poor application performance and poor
reliability are common factors which dramatically inhibit the acceptability of
today’s software applications. Hence, quality should be reviewed with
respect to the requirements based on reliability, functionality, application
performance and system performance. The Rational Unified Process
assists you in the planning, design, implementation, execution, and

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 21 of 101

evaluation of these test types. Quality assessment is built into the process,
in all activities, involving all participants, using objective measurements
and criteria, and not treated as an afterthought or a separate activity
performed by a separate group.

• Control Changes to Software - The ability to manage change-making
certain that each change is acceptable, and being able to track changes-is
essential in an environment in which change is inevitable. The process
describes how to control, track and monitor changes to enable successful
iterative development. It also guides you in how to establish secure
workspaces for each developer by providing isolation from changes made
in other workspaces and by controlling changes of all software artifacts
(e.g., models, code, documents, etc.). And it brings a team together to
work as a single unit by describing how to automate integration and build
management.

3.2 Model-Driven Development of SOA

Service-oriented architectures (SOA) will form the basis of future information
systems. Basic web services are being assembled to composite web services in
order to directly support business processes. As some basic web services can be
used in several composite web services, different business processes are
influenced if for example a web service is unavailable or if its signature changes.
Yet the range of such a change is often ambiguous due to a missing overall SOA
service model pointing out the influence of services on business processes. Here
we will present a SOA service model defined as a UML-based metamodel and its
integration into a model-driven service development approach.

With the evolution of service-oriented architecture (SOA) the focus in software
development changes from applications to reusable services. These (atomic)
services that offer coarse-grained functionality required for accomplishing the
business processes and are then being assembled in a process-oriented way to
composite services implementing fully automated and reusable parts of business
processes. This approach allows for flexible adjustments in quickly changing
business processes. Web services with the Web Service Description Language
(WSDL) for interface description and SOAP as communication protocol are the
most promising technologies for the implementation of SOA, but also other
technologies like for instance CORBA are conceivable. Concerning the
development process for SOA a model-driven approach is commonly embraced.
More precisely, various approaches for the mapping of business processes to an
SOA-based IT support have been proposed. Thereby, business processes are
formally described in a notation which allows the automated mapping to an
execution language and the execution by a process engine. As these kinds of
execution language mainly facilitate the possibility for composing services in a
process-oriented way, the development is also referred to as programming-in-
the-large. In the web service context, especially the Business Process Modeling
Notation (OMG-BPMN) supports such a programming-in-thelarge by introducing

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 22 of 101

an adequate metamodel for specifying executable business processes [EW+06].
In case of BPMN, the abovementioned automatic mapping is already defined for
the Business Process Execution Language (BPEL) [OASIS-BPEL], which
represents the most prominent execution language for specifying executable
business processes. Typically, an SOA has to support multiple business
processes, which currently are specified by means of several independent BPMN
models.
The following subsection describes SOA service metamodel and process
oriented methodology in more details:

• The SOA service metamodel consisting of the conceptual part, the
deployable part and the formal definition as a UML profile.

• Process-oriented methodology for designing an SOA on basis of our
metamodel.

3.2.1 SOA Service Metamodel

In this section our SOA service metamodel is introduced. This metamodel is
supposed to allow a comprehensive modeling of SOA, including atomic and
composite services along with the components implementing them. Furthermore,
a distinction is drawn between a solely conceptual service model and a
deployable service model which extends the conceptual model by deployment-
specific information, like for instance the actual service endpoints. The following
picture (fig. 4) shows the conceptual part of the SOA service metamodel:

Figure 4 Conceptual Part of the SOA Service Metamodel

As stated before, within an SOA a general distinction is drawn between
composite and atomic services. Composite services use the explicit composition
functionality of SOA.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 23 of 101

The central element of our metamodel represents the Service. It provides a set of
Service Interfaces each of them consisting of Service Operations. This
containment relation is strictly enforced. The provision of Service Interfaces is
modeled using the association “providedServiceInterface”. The usage view on a
service is defined via the signatures of its Service Operations and the
corresponding Service Messages which can be of type Request Message
(incoming) or Response Message (outgoing). This is modeled using associations
between Service Operation and Service Message. In this way, Service Messages
can be used both in different Service Operations and in different contexts: they
can be Request Messages for one Service Operation and Response Message for
another Service Operation. As a constraint, a Service Operation does either have
to have a Request Message or a Response Message. Additionally, a Fault
Message can be defined for each Service Operation which is used if an error
occurs. Each Service Message consists of a set of Service Parameters; at least
one has to be defined.

So far, we defined the external view on a service. The aforementioned elements
do not describe the Service’s functional part (i.e. the Service Providing
Component) yet. This is why we put a n:1 association between a Service and its
implementation, the (abstractly defined) Service Providing Component. In case
of atomic services, this Service Providing Component is an Atomic Service
Component, which basically relates to a traditional component artifact. The
previously introduced elements allow the modeling of atomic services. Neither
the specification of services composition nor the explicit modeling of
dependencies between the composite and the included atomic services is
supported yet. For this purpose, we introduce the Composition Component as a
Service Providing Component that provides the implementation for the composite
service. Unlike atomic services, the composition service’s application flow (i.e.
orchestration) is implemented using explicit SOA composition technology. The
required information is held as the executable Orchestration Definition, for
instance based on the Business Process Modeling Notation or UML Activity
Diagrams as defined in UML Superstructure [OMG-Super]. In order to execute
these definitions they have to be transformed to an executable language like
BPEL, which are then being deployed on a BPEL engine. Concerning the Service
Interface, there are no considerable differences between compositions and
atomic services. Just as well, regular Service Operations are provided. However,
regarding long-running compositions, for example, a Service Interaction Protocol
has to be additionally defined. This protocol is also referred to as the abstract
process or orchestration and defines the sequences of operation invocations.
Note that atomic services may be implemented as stateful services and therefore
also require such a protocol specification. One essential feature of composite
services represents the composition of already existing services to more complex
services. Thereby, the included services may be either atomic or composite.
Hence, the metamodel has to support the modeling of dependencies between
service compositions and the included services. For this purpose, we introduce
the association “requiredServiceInterface” which allows the linkage of a

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 24 of 101

Composition Component with the required Service Interfaces. The Orchestration
Definition in turn refers to the imported Service Operations, in case of BPMN for
instance within the scope of embedded receive, reply or service tasks.

3.2.1.1 Enhancing SOA Service Metamodel with Deployment
Information

At this point, we are able to model atomic as well as composite services including
the relationships between them in a purely conceptual way. The services are fully
specified regarding their offered functionality along with the service providing
components. However, in order to operate the services, additional deployment
information is required. In consequence, for each conceptually specified Service
there may be several Deployable Services. With the word “deployable” we
express that the service model comprises additional deployment-relevant
information, but the services do not have to be actually deployed yet. However,
the deployment enhanced metamodel may form the basis for a corresponding
(operational) deployment model, parts of which could be generated automatically.
The figure below (fig 5) illustrates the extensions of the previously presented
metamodel required for specifying Deployable Services. The newly introduced
elements extend their conceptual counterpart by deployment relevant
information. Note that the associations shown in (fig 2) are actually inherited from
the conceptual elements, which – for the sake of clarity – are hidden in this
diagram. A Deployable Service Interface for instance inherits all features of the
related conceptual service interface, but is extended by the supported binding
type and the service’s endpoint reference. Each specified deployable element is
associated with one distinct conceptual element via a designated association
(e.g. hasConceptual). Compiling a model of the deployable services several
constraints apply depending on the used element. These constraints do not only
apply to the elements of the metamodel (M2 level according to the UML 4-
layer metamodeling hierarchy (OMG-Infra), but also on the instantiated models
(M1 level).

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 25 of 101

Figure 5 Deployable Part of the SOA Service Metamodel

• On the M1 level, a Deployable Service Interface which is associated with a
Deployable Service has to comprise exactly the same features as the
conceptual Service Interface belonging to the associated conceptual
Service. For example, a Deployable Service Interface has to offer exactly
the same Service Operations as the associated conceptual Service
Interface on the M1 level. The same applies for Deployable Atomic
Services and Deployable Composition Components.

• In case of a Deployable Composition Component only Deployable Service
Interfaces may be included via the (inherited) association
requiredServiceInterface.

• On the M1 level, for each conceptual Service Interface the corresponding
Composition Component includes via the association
requiredServiceInterface, the respective Deployable Composition
Component requires exactly one Deployable Service Interface that
corresponds to the included conceptual Service Interface. For example, if
a Composition Component “c1” requires a Service Interface “s1” and there
are two Deployable Service Interface for “s1”, namely “s1,1” and “s1,2”, a
corresponding Deployable Composition Component “dc1,1” requires
exactly one of them.

Using this extension for the (conceptual) SOA service model we are able to
bridge the gap between a pure design model and an operational model.
Furthermore, this approach conforms to the distinction that is drawn between the
abstract and the concrete part within WSDL (W3C-WSDL). Accordingly, the
specified atomic Deployable Services hold all information needed for an
automated generation of a fully fledged WSDL along with skeletons for the
specific implementation. In case of composite services, the specific BPEL

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 26 of 101

deployment descriptor holding the binding information about the included
partner’s endpoints can also be generated via parsing all corresponding
associations of type requiredServiceInterface.

3.2.1.2 UML profiles

To be able to apply our service model in an UML-based software development
process, it is a prerequisite to define a UML-Profile deriving our concepts to
meta-classes defined by UML superstructure (UML-Super). Thereby, we followed
related approaches to SOA modeling and basically specified an extended
component model. According to Table 1, we regard all kinds of (Deployable)
Service Providing Components as specific types of components known from the
UML metamodel. Thus, all the required stereotypes in this case – directly or
indirectly – extend the UML meta-class Component. The (Deployable) Service
itself extends the UML meta-class Port. As a service from an engineering point of
view is often defined as a software entity that offers functionality in a
standardized way [Le03], we regard the semantics of the element Port as most
suitable. But in contrast to the UML component diagram, where several Ports
may be attached to one Component, a Service Providing Component may only
offer one Service. A Service on the other hand may be comprised of several
Service Interfaces, which in turn offer several Service Operations. These
stereotypes extend the corresponding UML meta-classes interface and
operation.

Figure 6 UML Profile for the SOA Service Metamodel

Due to the fact that a Service Operation in our case refers to different Service
Messages, we did not directly use the respective UML metaclass. Consequently,
we also had to define a new stereotype for Service Interface, as this element may
only provide such Service Operations. The same holds for the newly introduced
associations “providedServiceInterface” and “requiredServiceInterface”, which
extend the UML metaclasses “provided interface” and “required interface”. All the
remaining custom associations are derived from the UML Kernel metaclass

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 27 of 101

Association. In contrast to these straightforward profile extensions, for the
elements Service Interaction Protocol and Orchestration Definition in each case
several feasible options are conceivable. According to the Interaction Protocol
may be specified through a protocol state machine offered by UML. As an
alternative to this approach, propose the employment of UML sequence
diagrams for this purpose. Within this paper we limit the scope to stateless
services, which do not require such an Interaction Protocol. A final decision in
this matter is part of our future work. The orchestration definition on the other
hand may for instance be specified by means of UML activity diagrams. So the
stereotype would extend the UML metaclass Activity Diagram. Unfortunately,
activity diagrams are designed for a very general purpose. Unlike BPMN, the
specific semantics of orchestration models is not regarded. But if BPMN were
used for modeling orchestrations, these models could not be part of an integrated
UML profile. Nevertheless, the different models could be synchronized through
adequate transformations. This would be rather complex approach. With the
introduction of the BPDM these discrepancies might be resolved.

3.2.2 Process-Oriented Methodology for Developing an SOA

In this section we will introduce a well known process-oriented methodology for
developing an SOA using our previously introduced SOA service metamodel.
This methodology is common for each SOA specific project. The following steps
need to be performed:

• Identification and Modeling of Executable Business Processes – Definition
of business processes, sub-processes and their relationship need to be
defined.

• Identification and Modeling of the Atomic Services - Having identified and
modeled the executable processes, the next step comprises the
identification and modeling of the required atomic services. Within the
process models we already pointed up the necessary service operations.
After equivalent operations have been identified, these consolidated
operations have to be grouped to services. This grouping can for instance
be accomplished by creating a service for each involved legacy system. If
the services grow too large a further segmentation may be performed by
means of the process they support, the coarse-grained modules of an
existing application they belong to, or along the involved business objects
in terms of Create, Read, Update and Delete (CRUD) operations.

• Specification of Composite Services - Services are combined to composite
services that usually appear as component.

• Specification of Deployable Services - The final step in the SOA service
modeling represents the extension of the previously created conceptual
services by deployment information. In consequence, different
ServiceEndPoints are specified for the two Deployable Service Interfaces.
The Binding in both cases is set to SOAP. The Deployable Atomic Service
Components may be as well extended deployment-specific information,
like for instance the additional information required to generate an

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 28 of 101

deployment descriptors for application servers like BEA WebLogic, IBM
WebSphere or Redhat JBoss AS. As one can observe, each deployable
element is connected with its corresponding conceptual element via the
association hasConceptual. On basis of this association, the two different
models can be synchronized in case of changes, like for instance the
specification of a further Service Operation within the conceptual part.

• Mapping to BPEL - Using the process that we defined we can
automatically generate the relevant BPEL code. To execute a BPEL
process a BPEL engine is needed which parses the BPEL code and
executes the contained instructions. Examples of existing BPEL engines
are Oracle BPEL Process Manager and ActiveBPEL by ActiveEndpoints.
All engines have in common that the BPEL process, which has to be
deployed itself as well, needs to be supplemented. Of course the general
BPEL code is always the same regardless which BPEL engine is used
because it is standardized. But in practice the deployable BPEL packages
differ from engine to engine. For instance, an engine-specific so-called
deployment descriptor is additionally needed in order to execute the
process. Using our approach, we can automatically generate the
necessary deployment descriptors along with the required wrapper
services, which extend the original WSDL by BPEL-specific information
about the provided partner links.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 29 of 101

4 Component Business Model
Component business models offer a proven approach to driving a specialized
focus, both internally and externally. Internally, components help firms rethink the
leverage they can achieve with the assets and capabilities they own. Externally,
components help firms to archive specialized capabilities that they cann’t feasibly
create themselves. These are specific industry components that firms cann’t
create by the themselves (For example the firm can create it by external
company or some public organization). Combining these types of specialization
allows firms to redefine their competitive positions in the face of the sweeping
changes in their industries, while simultaneously achieving the competing
benefits of scale, flexibility and efficiency. CBM allows firms to evaluate the goals
and strategy of the entire enterprise to take simultaneous advantage of internal
and external specialization. Without increasing complexity, the model allows an
organization to expand and evolve while reducing risk, driving business
performance, boosting productivity, controlling costs and improving capital
efficiency and financial predictability.

4.1.1 CBM Framework

As we have seen, components aggregate business activities into discrete
modules that can be shared across the firm. But these components can work
together within the context of an overall business model. CBM provides a
framework for organizing these components. These component represent
internal and external specialization by organizing activities by competency and
accountability level. The fig 7 represents a CBM map with internal and external
components.

Figure 7 CBM map

By employing this framework, executives can begin to envision how current
business activities might function as an interlocking set of modules. Categorizing

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 30 of 101

activities by business competency yields a high-level view of components
according to the type of value they provide to the enterprise. Different firms in
different industries will model their competencies differently, but, in every case,
each activity should line up under a particular competency. Assigning each
activity to one of three accountability levels – direct, control and execute – can
also help executives begin to flesh out the component vision. The level of a given
component should be intuitive, although exceptions will exist.

• Direct. Components at this level provide strategic direction and corporate
policy to other components. They also facilitate collaboration with other
components.

• Control. These mid-tier components serve as checks and balances
between the “direct” and “execute” levels. They monitor performance,
manage exceptions and act as gatekeepers of assets and information.

• Execute. These “boots on the ground” components provide the business
actions that drive value creation in the enterprise. They process assets
and information for use by other components or the end customer.

The three accountability levels imply different priorities. At the “execute” level, for
example, the emphasis is on keeping people fully occupied and productive.
Components at this level tend to be structured in ways that make information
easily available. From a technology standpoint, speed of data entry and real-time
availability are very important. When customers go to an ATM, for instance, they
want a simple interface that provides accurate information in a straightforward
format: how much money is in my account?
Contrast this with activities related to the “direct” tier, where such high-level
activities as launching new products are handled. This level houses a small
number of people who have a very large impact on shareholder value, so the
design imperatives are nearly the opposite of those at the “execute” tier.
Launching a new product requires collaboration among several elements,
including marketing, risk, finance, regulatory and credit. Input from all of these
stakeholders is needed to make the launch a success, so workflow is a key
requirement. From a technology standpoint, activities typically require people to
discern patterns and trends from rich, multidimensional data, usually stored in a
data warehouse. So, systems at the direct level are not designed for speed of
data entry, but rather for ease, breadth and depth of analysis. Real-time
interfaces are not needed, as data is often months old and processed in batches.

4.1.2 Business Components

Business components are the modular building blocks that make up the
specialized enterprise. Each component encompasses five dimensions:

• A component’s business purpose is the logical reason for its existence
within the organization, as defined by the value it provides to other
components.

• Each component conducts a mutually exclusive set of activities to achieve
its business purpose.

• Components require resources, the people, knowledge and assets that
support their activities.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 31 of 101

• Each component is managed as an independent entity, based on its own
governance model.

• Similar to a standalone business, each business component provides and
receives business services.

Example of Business Component: Bank decides to gather its credit decision
activities into a single component. To realize efficiency gains, it centralizes all of
the associated people, processes and assets that used to be spread across
several business units. It also consolidates financial databases from across the
firm, boosting the quality
of information on which its decision activities rely. Keeping the information in a
single place also allows credit appraisers to make better choices when it comes
time to assess portfolio information across accounts (say, when a checking
customer applies for a credit card). With a much clearer picture of a customer’s
credit risk, the company can cross-sell its financial products much more
effectively.

4.1.3 CBM Strategy road map

CBM is not simply a way to imagine the future of the organization. It can also be
used to put theory into action and drive the evolution toward a specialized
enterprise, both internally and externally. This process involves three dimensions:

• Developing a component view of the existing organization based on
analysis of the business and the market environment.

• Evolving toward specialization based on a reinvention plan within the
context of changing industry dynamics.

• Advancing the organizational and operational infrastructure toward
component-based enterprise optimization.

4.1.3.1 Developing a component view of the enterprise

A company can begin to develop a component view of the enterprise by using the
CBM framework as an analytical tool to identify the gaps and redundancies it
must resolve on the way to becoming a component-based enterprise. A good
way to start is by mapping the current business as a network of components. The
initial analysis involves identifying and grouping cohesive activities into discrete
units and testing the overall logic. The result is a “component map.”
The next component map (fig. 8) shows the retail industry. Of course, every
business will have its own, unique perspective on its component structure,
despite substantial commonality with other players in its industry.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 32 of 101

Figure 8 Mapping the enterprises as network building model.

The component map provides a basis for developing strategic and operating
insights for the business. By gauging the relative business value of different
areas of the map, executives can determine which components demand
immediate attention. The next component map illustrates this type of analysis
yields a “heat map” that highlights the components that represent the greatest
economic value.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 33 of 101

Figure 9 Heat map identify “hot” areas to exploit business value.

To determine heat map priorities, executives will typically consider the following
questions. Which components differentiate them most significantly in the
marketplace?

Which components have the most dramatic impact on their ability to maintain and
grow margins? Which components offer significant cost and capital optimization
opportunities?

For example, near-term changes that enhance the firm’s strategic differentiators
are likely to be designated as “hot” areas. Parts of the business that already
resemble components, such as shared service centers, may also be early
priorities. Quick wins are typically found when disparate and duplicate functions
are consolidated into true operational components. Efficiencies gained in the first
round of componentization can be used to support subsequent change initiatives.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 34 of 101

Figure 10 Three phases of CBM analysis: Insight, Architecture, Investment

After the insight phase of CBM analysis comes the architecture phase (fig 10).
Here, the firm overlays the heat map onto the existing business. The goal is to
identify gaps between the “to-be” vision of the componentized business and the
“as-is” view – a representation of how the firm presently organizes its people,
processes and technology. To capture the full scope of the firm’s current
capabilities and market positioning, this “as-is” representation must be firmly
grounded in empirical data, such as organization charts, cost drivers, application
portfolios, technology investments, key performance metrics and existing
processes. Finally, in the investment phase, the firm decides how to close the
gaps: How big a leap can the firm take? How much change can be absorbed?
Which areas should the company focus on fist? Where are the quick wins?

4.1.3.2 Evolving toward CBM-based specialization

An enterprise can evolve toward its component-based vision by developing a
reinvention plan. The good news is that many firms have already begun the CBM
journey. Process reengineering and outsourcing have provided enterprises with
modest levels of internal and external specialization. Most firms today have a
blended process optimized and partnered model and now need to decide where
to go.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 35 of 101

Figure 11 External Specialization

As shown into Figure 11 above, a firm can mature toward specialization by
considering the role (or, in the vast majority of cases, the blend of roles) that
provides the greatest competitive advantage in the marketplace. “Network
players” focus on external specialization, focusing on top-line growth through the
construction of networks and ecosystems. “Enterprise optimizers” drive internal
specialization, focusing on bottom-line improvements by reducing costs and
becoming more flexible. “Visionary adopters” strike a balance between the two,
aligning internal and external strategies with industry trends to move more
directly toward a specialized enterprise.

These three roles do not represent mutually exclusive approaches. Rather, they
highlight the external, internal and blended aspects that all companies must take
into account as they evolve toward specialization. Over time, the emphasis
placed on any particular aspect will tend to vary depending on the firm, the
industry and the current level of specialization. Most firms will find they must
iterate between the external and internal dimensions strategically, selecting
priorities that position them for further progress toward full specialization. At
every stage, the enterprise should align its migration strategy with opportunities
that create the most value most quickly.

4.1.3.3 Building a component infrastructure

Components are autonomous in the sense that they are freed from the
constraints of hardwired processes and organizational silos. But they do not
operate in a strategic vacuum. To effectively serve the firm, components must
work together toward a common goal – the delivery of sustainable value to the
firm’s stakeholders. Achieving this alignment of ends requires the right

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 36 of 101

organizational model, process view and connectivity platform. Successful
component-based organizational models balance the need for flexibility and
discipline. To be responsive, the governance structure must be tied strongly to
the customer value proposition, yet must also provide a clear context of defined
relationships and measurable expectations as a basis for component interaction.
Value networks should similarly be flexible and resilient, leveraging variable
pricing and supply to support fluctuating demand while improving business
continuity. Job descriptions should also be variable – based on organizational
roles, rapid resource deployment and established methods for sharing knowledge
and developing deep capabilities – rather than fixed around departmental
structures. Finally, the organization’s culture should provide a collaborative work
environment that empowers employees to engage in fact-based decision-making.
In addition to a flexible, disciplined organizational model, a successful component
infrastructure also requires processes that are responsive across a sequence of
components. Under CBM, processes are represented as sequences of activities
performed via networks of collaborating components. The placement and timing
of decision points that define the course of a process must be appropriate to the
requirements of the organizational model. Recognizing and anticipating potential
exceptions allows the enterprise to be more resilient.

Finally, the infrastructure should leverage the full power of the global connectivity
platform to support the firm’s evolution toward a specialized enterprise.
Fortunately, trends in this area continue to be favorable. The combination of high-
performance connectivity, widespread technology platforms and open protocols
boosts collaboration and reduces the costs of coordination, both within firms and
externally with partners.

Technologies like broadband, wireless, instant messaging and voice-over-IP
streamline collaboration by offering realtime access to information and seamless
connectivity beyond traditional boundaries. Complex enterprise activities are
increasingly optimized by standard software like enterprise resource planning
solutions. Hardware, software and storage costs continue to decline, even as
application functionality and processing speeds increase. Open standards like
Linux®, XML and service oriented architecture and programming (SOAP) help
organizations tap the resources of the global connectivity platform while
leveraging faster and cheaper plug-and-play substitution.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 37 of 101

5 Business Processes and Modeling
It is an obvious, but often ignored statement that IT systems should support
solutions to business problems. The SOA-led approach aligns IT solutions to
business needs and constraints more directly than traditional techniques. The
service-led approach implicit in any SOA changes the way IT thinks when it looks
to provide automated solutions. Prior to implementing a solution, the business
has to decide what the problem is, and the business value in solving that
problem. This relates back to the wider problem of business strategy and
business alignment. By aligning IT to the strategic business goals and values,
SOA-based solutions can lead to much focused deliveries from IT.
All the information about business processes and modeling is provided by IBM
from their red book Building SOA solution using Rational SDP chapter 5,6 and 7.
Unfortunately I cann’t provide this information inside of my master thesis, but
however the most interested readers can find it here:
http://www.redbooks.ibm.com/abstracts/sg247356.html?Open

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 38 of 101

6 Service oriented modeling and architecture
Service oriented modeling and architecture covers a broader scope and
implements service-oriented analysis and design through the identification,
specification and realization of services, components that realize those services
and flows that can be used to compose services.

SOMA includes an analysis and design method that extends traditional object-
oriented and component-based analysis and design methods to include concerns
relevant to and supporting SOA. It consists of three major phases of
identification, specific and realization of the three main elements of SOA, namely,
services, components that realize those services and flows that can be used to
compose services.

SOMA is an end-to-end SOA Method for the identification, specification,
realization and implementation of services (including information services),
components, flows (processes/composition). SOMA builds on current techniques
in areas such as domain analysis, functional areas grouping, variability-oriented
analysis process modeling, component-based development, object-oriented
analysis and design and use case modeling. SOMA introduces new techniques
such as goal-service modeling, service model creation and a service litmus test
to help determine the granularity of a service.

The three fundamental constructs of the SOA models are services, service
components (implementations that realize those services), and flows (or
processes) that orchestrate the services. SOMA was created specifically to
address the analysis and design of all three constructs. As documented within
the Rational® Unified Process (RUP), SOMA essentially consists of three major
steps:

• Service Identification: Derives and defines the candidate services.

• Service Specification: Establishes and validates service exposure
decisions and derivation of the high-level service model.

• Service Realization: Attributes and extends the high-level service model
in terms of overall component design.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 39 of 101

Figure 12 SOMA Method

6.1.1 Service Identification

The key output of the Service Identification step is a set of candidate business
services. The list of candidate services is generated in Service Identification via
the three techniques:

• A top-down approach known as domain decomposition.

• A bottom-up IT-centric approach focusing on discovery and
characterization of existing IT assets.

• A meet-in-the-middle approach referred to as goal-service modeling.

Domain decomposition provides the top-down, business-driven technique aimed
at capturing information about significant business domains, functions,
conceptual subsystems, and business processes for an organization. Domain
decomposition results from the specification of business requirements originating
from the business component design. Additionally, domain decomposition can be
enabled via the creation and validation of process models using tools like the
WebSphere Business Modeler.

Business process modeling often takes place following the identification of key
business activities arising from business component design. Process modeling
usually starts with a business analyst using tooling to model the As-Is (current)
state of the business process. Within the process model, analysts represent work
activities or tasks as steps in the process. As the process model evolves and is
reviewed by other business stakeholders, the "tasks" become analogous to
candidate services. In some modeling tool implementations such as the
WebSphere Business Modeler, business analysts can design As-Is and To-Be
models, and can simulate the process to determine run time characteristics
including costs, resource requirements, and process bottlenecks. Some tools
also support the definition and specification of business key performance
indicators (KPI). An example of a business KPI for Account Opening might be
stating the average time needed to open an account should be less than 18

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 40 of 101

hours. Through ongoing design and simulation, process modeling links business
requirements and business services to the identification of candidate services.
The existing asset analysis technique is enabled via tooling, as well as by the
review of existing documentation and knowledge of existing IT assets. This
activity examines existing IT assets that might be considered for implementing
functionality required by the To-Be process. Sources of existing assets might
include:

• Mainframe-based (for example, CICS/IMS/Batch) transactions.

• Commercial application (for example, SAP, Siebel) via API, messaging
or service interfaces.

• Custom in-house applications, such as J2EE, .Net, and client/server
applications.

• Services and interfaces for external services and components available
through partners.

One tool that might be used to support this function is the WebSphere Asset
Transformation Workbench. This tool assists IT personnel with the extension,
reuse, and transformation of existing applications, and dependencies analysis of
applications within mainframe and/or distributed environments.

As with domain decomposition, the result of the asset analysis activity is a list of
potential candidate services. It should be explicitly stated that assets discovered
(as well as the first iteration of potential candidate services) are not equal to
services. In fact, most operations are fine-grained even when they are composed
services, such as an IDOC or BAPI interactions through SAP. These candidate
services are usually suboptimal in terms of conformance to SOA design
principles and will likely be encapsulated by higher level services.

Lastly, goal-service modeling is derived from top-down and bottom-up
approaches using the business and IT requirements to drive identification of
additional candidate services. This activity helps in the identification of business-
aligned services and ensures that services have not been identified during
domain decomposition or existing asset analysis. Goal-service modeling starts
with an identification of business goals, breaks them into sub-goals, and then
determines which services are needed to fulfill these sub-goals.

6.1.1.1 Service classification or categorization

This activity is started when services have been identified. It is important to start
service classification into a service hierarchy, reflecting the composite or fractal
nature of services: services can and should be composed of finer-grained
components and services. Classification helps determine composition and
layering, as well as coordinates building of interdependent services based on the
hierarchy. Also, it helps alleviate the service proliferation syndrome in which an
increasing number of small-grained services get defined, designed, and deployed
with very little governance, resulting in major performance, scalability, and

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 41 of 101

management issues. More importantly, service proliferation fails to provide
services, which are useful to the business, that allow for the economies of scale
to be achieved.

6.1.1.2 Subsystem analysis

This activity takes the subsystems found above during domain decomposition
and specifies the interdependencies and flow between the subsystems. It also
puts the use cases identified during domain decomposition as exposed services
on the subsystem interface. The analysis of the subsystem consists of creating
object models to represent the internal workings and designs of the containing
subsystems that will expose the services and realize them. The design construct
of “subsystem" will then be realized as an implementation construct of a large-
grained component realizing the services in the following activity.

6.1.2 Component Specification

In the next major activity, the details of the component that implement the
services are specified:

• Data

• Rules

• Services

• Configurable profile

• Variations

Messaging and events specifications and management definition occur at this
step.

6.1.2.1 Service allocation

Service allocation consists of assigning services to the subsystems that have
been identified so far. These subsystems have enterprise components that
realize their published functionality. Often you make the simplifying assumption
that the subsystem has a one-to-one correspondence with the enterprise
components. Structuring components occurs when you use patterns to construct
enterprise components with a combination of:

• Mediators

• Façade

• Rule objects

• Configurable profiles

• Factories

Service allocation also consists of assigning the services and the components
that realize them to the layers in your SOA. Allocation of components and
services to layers in the SOA is a key task that requires the documentation and
resolution of key architectural decisions that relate not only to the application

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 42 of 101

architecture but to the technical operational architecture designed and used to
support the SOA realization at runtime.

6.1.3 Service Specification

The second major phase in SOMA is Service Specification. This technique
contains a number of distinct steps, but for the purpose of this article, I will distill
the discussion down to two major activities:

- Applying the Service Litmus Test to determine which candidate services
are appropriate to expose.

- Specification of the service model in terms of dependencies,
composition, non-functional requirements, message definition, and state
management requirements.

The Service Litmus Test is a defined set of criteria to resolve whether a
candidate service should be exposed. The criteria fall into four major areas:

• Business alignment: Focusing on business relevance of the service, the
presence of a funding model to support development and maintenance,
and the ability to share the service across the organization.

• Composability: Focusing on consistency with non-functional requirements
at the composite level, consideration of state management aspects,
identifying service dependencies, and supporting technology/platform
neutrality.

• Externalized service description: Focusing on the presence of an external
service description (such as WSDL), the ability to support service
discovery and binding via the service description, and providing meta data
as part of the service description.

• Redundancy elimination: Focusing on the ability to reuse the candidate
service across multiple composite scenarios where the specific function is
needed.

Through this set of questions and optional extensions and customizations, as
appropriate for the specific organization, the design team can make appropriate
architectural decisions regarding which services should be developed, exposed,
and managed as service implementations.

The definition of the service model consists of multiple steps and normally results
in the creation of UML work products. This step is facilitated through the use of
architecture tooling such as the Rational Software Architect and the UML Profile
for Software Services. During this step, the service model is designed through
documenting service dependencies, defining service composition, documenting
the service non-functional aspects, defining the high-level service message
model, and specifying state management requirements.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 43 of 101

6.1.4 Service Realization

As the last major activity in SOMA, Service Realization defines the allocation of
services to a component and the allocation of these components to an
implementation solution. For example, a service might be realized through an
EJB that we expose as a Web service; another service may be realized through
the wrappering of one or more CICS transactions, and another may be realized
through an adapter providing a J2C interaction pattern.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 44 of 101

7 SOA solution stack
SOA allows business and IT convergence through agreement on a set of
business-aligned IT services that collectively support an organization's business
processes and goals. Not only does it provide flexible, decoupled functionality
that can be reused, but it also provides the mechanisms to externalize variations
of quality of service; for example, in declarative specifications such as WS-Policy
and related standards.
SOA "solution stack" includes reference architecture (an architectural template,
or blueprint) for a Service-Oriented Architecture. It provides a high-level
abstraction of an SOA factored into layers, each of which addresses specific
value propositions within SOA. Underlying this layered architecture is a Meta
model consisting of layers, architectural building blocks (ABBs), relations
between ABBs and layers, interaction patterns, options, and architectural
decisions. These will guide the architect in the creation of the architecture.
The layers facilitate separation of concerns and assist the process of creating an
SOA in conjunction with methods such as the Service-Oriented Modeling and
Architecture (SOMA) method. The SOA solution stack defines a blueprint that
can be used to define the layers, architectural building blocks within the layers,
options available at each layer, and typical architectural decisions that need to be
made.
The SOA solution stack has nine layers that are designed to reinforce SOA
business value. For each layer, there are two aspects: logical and physical. The
logical aspect includes all the architectural building blocks, design decisions,
options, key performance indicators, and the like; the physical aspect of each
layer covers the realization of each logical aspect using technology and products.
The logical aspect of the solution stack addresses the question, "If I build a SOA,
what would it conceptually look like and what abstractions should be present?"
The solution stack enumerates the fundamental elements of an SOA solution and
provides the architectural foundation for the solution.

As shown into a picture bellow (fig 13), the meta model of solution stack includes
the following elements:

• Layer. An abstraction of the nine layers of the SOA solution stack that
contains a set of characteristics, including architectural building blocks,
architectural decisions, interactions among components, and
interactions among layers.

• Option. A collection of possible options available in each layer that
impacts other artifacts of a layer. Options are the basis for architectural
decisions within and between layers.

• Architectural decision. A conclusion derived from options. The
architectural decision involves architectural building blocks, key
performance indicators, and nonfunctional requirements to provide
information on configuration and usage of architectural building blocks.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 45 of 101

Existing architectural decisions can also be reusable by some layers or
architectural building blocks.

• Method activity. A collection of steps that involve architectural building
blocks to form a process in a layer.

• Architectural building blocks. Reside in a layer and contain attributes,
dependencies, and constraints as well as relationships with other
architectural building blocks in the same layer or different layers.

• Interaction pattern. An abstraction of the various relationships among
architectural building blocks; for example, patterns and diagrams.

• Key performance indicator (KPI). A constraint on architectural building
blocks.

• Nonfunctional requirement (NFR). A constraint on architectural building
blocks.

• Enabling technology. A technical realization of architectural building
blocks in a specific layer.

• Externalized business solution element. A business service entity in a
specific layer to be exposed to external consumers.

• Business solution connection. An adaptor for utilizing external services.

• Data model. Models data content associated with architectural building
blocks, including data exchange between layers and external services.

7.1.1 SOA solution stack assumptions

There are several SOA solution stack assumes that are listed below:

• A set of requirements (service requirements) exists that collectively
establishes the objective of the SOA. These requirements are both
functional and nonfunctional in nature. Nonfunctional service aspects
include security, availability, reliability, manageability, scalability, and
latency.

• A service requirement is the documented capability that a service is
expected to deliver. The provider view of a service requirement is the
business and technical capability that a specific service needs to deliver
given the context of all of its consumers. The consumer view of a
service requirement is the business and technical capability that the
service is expected to deliver in the context of that consumer alone.

• The fulfillment of any service requirement may be achieved through the
capabilities of one layer or a combination of layers in the SOA solution
stack.

• For each layer there is a specific mechanism by which the service
requirements influence that layer.

• The identification of service requirements and the mapping of those
requirements to each of the layers of the solution stack is a key aspect
in developing an SOA for an enterprise.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 46 of 101

7.1.2 Layers of the SOA reference architecture

The architectural diagram shown in picture (fig 13) below depicts an SOA as a
set of logical layers. Note that the SOA solution stack is a partially layered
architecture. One layer does not solely depend upon the layer below it. ; for
example, a consumer can access the business process layer as a service or the
service layer directly, but not beyond the constraints of the SOA architectural
style. Further, a given SOA solution may exclude a business process layer and
have a consumer’s layer that interacts directly with the services layer. Such a
solution would not benefit from the business value associated with the business
process layer; however, that value could be achieved at a later stage by adding
the layer. The degree to which a given organization realizes the full SOA solution
stack will differ according to the level of service integration maturity it requires.

Figure 13 SOA solution stack

The picture above (fig 13) illustrates the multiple separations of concern in the
nine layers of this reference architecture. Although the provider and the
consumer can belong to the same organization -- and they usually do -- the SOA
solution stack does not assume this to be the case. The main point of the
provider/consumer separation is that there is value in decoupling one from the
other along the lines of a business relationship. Organizations may have different
lines of business that use this architectural template (where one organization is
the consumer and another is the provider), customizing it for their own needs and
integrating and interacting between organizations. In such cases there is still real
value in maintaining a decoupled consumer/provider relationship. The lower
layers (services, service components and operational layer) are concerns for the
provider, and the upper ones (services, business processes, and consumers) are
concerns for the consumer. In the remainder of this article we describe each
layer and, in subsequent sections, describe the relationships between the layers.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 47 of 101

There are five horizontal layers that relate to the overall functionality of the SOA
solution. The vertical layers are nonfunctional in nature and support various
concerns that cut across the functional layers.

7.1.2.1 Operational layer (Layer 1)

This layer includes all custom or packaged application assets in the application
portfolio running in an IT operating environment, supporting business activities.
The operational layer is made up of existing application software systems;
thereby, it is used to leverage existing IT investments in implementing an SOA
solution. This directly influences the overall cost of implementing the SOA
solution, which can help free up budget for new initiatives and development of
new business-critical services. A number of existing software systems are part of
this layer. Those systems include:

• Existing monolithic custom applications, for example J2EE™ and
Microsoft® .NET® applications

• Legacy applications and systems

• Existing transaction processing systems

• Existing databases

• Existing packaged applications and solutions, including enterprise
resource planning (ERP) and customer relationship management (CRM)
packages (such as SAP and Oracle solutions and etc.)

7.1.2.2 Service component layer (Layer 2)

This layer contains software components, each of which provide the
implementation for, realization of, or operation on a service, which is why it's
called a service component. Service components reflect the definition of a
service, both in its functionality and its quality of service. Service components
may comply with the Service Component Architecture (SCA) and Service Data
Objects (SDO).
The service component layer conforms to service contracts defined in the
services layer; it guarantees the alignment of IT implementation with service
description.

Each service component:

• Provides an enforcement point for "faithful" service realization to ensure
quality of service and adherence to service-level agreements (SLAs).

• Enables business flexibility by supporting the functional implementation
of IT flexible services as well as their composition and layering.

• Enables IT flexibility by strengthening decoupling in the system.
Decoupling is achieved by hiding volatile implementation details from
consumers.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 48 of 101

The picture below (fig 14) illustrates these concepts and shows service A
implemented using a combination of behavior from the third-party Package X and
Application Y. Application B, the consumer, is coupled only to the description of
the exposed service. The consumer must assume that the realization of the
service is faithful to its published description (thereby providing service
compliance), and it is the providers' responsibility to ensure that it is. The details
of the realization, however, are of no consequence to Application B. Service
Component A acts as a service implementation facade, aggregating available
system behavior and giving the provider an enforcement point for service
compliance.

Figure 14 Service component as a facade

Subsequently, the provider organization may decide to replace Package X with
Package M or some other application. Service component A encapsulates the
required modifications with the result that there is no impact on any consumers of
service A. This example illustrates the value of the service component layer in
supporting IT flexibility through encapsulation.

7.1.2.3 Services layer (Layer 3)

This layer consists of all the services defined within the SOA. For the purposes of
this reference architecture, a service is considered to be an abstract specification
of a collection of (one or more) business-aligned IT functions. The specification
provides consumers with sufficient detail to invoke the business functions
exposed by a provider of the service; ideally this is done in a platform-
independent manner. The service specification includes a description of the
abstract functionality offered by the service similar to the abstract stage of a Web
Services Definition Language (WSDL). This information is not necessarily written
using WSDL.The service specification may also include:

• A policy document

• SOA management descriptions

• Attachments that categorize or show service dependencies

Some of the services in the service layer may be versions of other services,
implying that a significant successor-predecessor relationship exists between
them.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 49 of 101

Exposed services reside in this layer; they can be discovered and invoked or
possibly choreographed to create a composite service. Services are functions
that are accessible across a network through well-defined interfaces of the
services layer. The service layer also takes enterprise-scale components,
business-unit-specific components, and project-specific components and
externalizes a subset of their interfaces in the form of service descriptions. Thus,
the components provide services through their interfaces. The interfaces are
exported as service descriptions in this layer, where services exist in isolation
(atomic) or as composite services.

This layer contains the contracts (service descriptions) that bind the provider and
consumer. Services are offered by service providers and are consumed by
service consumers (service requestors).

Services and their underlying building blocks are defined according to the service
identification activities defined through three complementary techniques:

• Domain decomposition

• Existing asset analysis

• Goal-service modeling

These techniques are part of Service-Oriented Modeling and Architecture
(SOMA) method for the identification, specification, and realization of services,
components and flows. They represent, therefore, the heart of the SOA value
proposition -- improved agility from the decoupling of business and IT. The quality
of these service definitions has a significant impact on the benefit of a given SOA
effort.

Services are accessible independent of implementation and transport. This
capability allows a service to be exposed consistently across multiple customer-
facing channels such as the Web, interactive voice response (IVR), Seibel client
(used by a customer service rep), and so on. The transformation of responses to
HTML (for Web), Voice XML (for IVR), XML string (for Siebel client) can be done
through XSLT functionality supported through Enterprise Service Bus (ESB)
transformation capability in the integration layer.

It is important to acknowledge that service components may consume services to
support integration. The identification and exposure of this type of service (that is,
internal services) does not necessarily require the same rigor as is required for a
business service. While there may be a compelling IT-related reason behind the
use of such services, they are not generally tied to a business process. As such,
they do not warrant the rigorous analysis required for business services.

This set of requirements and services contained by this layer can be used to
better leverage the various capabilities provided by a mix of different vendors.
This is because the requirements enable the objective identification of SOA

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 50 of 101

infrastructure requirements. The solution stack provides a well-factored
decomposition of the SOA problem space, which allows architects to focus on
those parts of an SOA solution that are important in the context of the problem
they are solving and to map the required capabilities to vendor product
capabilities. This is preferred to trying to reverse-engineer SOA solution
architecture from the capability of a particular vendor's products. So, in addition
to being an important template for defining an SOA solution at a logical level, this
layer of the SOA reference architecture is also a useful tool in the design of
vendor-neutral SOA solutions.

The picture below (fig 15) magnifies the services layer shown into picture above,
and it shows that the services layer can be further divided into sub layers. It
includes the services that will be delivered by a given architecture, including both
composite and atomic services. The picture above (fig. 15) shows how to build an
SOA solution using the underlying middleware and infrastructure services
provided and categorized in following picture (fig 15):

Figure 15 The middleware view of the SOA reference architecture.

7.1.2.4 Business process layer (Layer 4)

Compositions and choreographies of services exposed in layer three are defined
in this layer. We use service composition to combine groups of services into
flows, or we choreograph services into flows, thereby establishing applications
out of services. These applications support specific use cases and business
processes. To do this, visual flow composition tools can be used for design of
application flows. The picture below (fig 16) shows how a business process P
can be implemented using services A, B, C, and D from the services layer.
Process P contains the logic for the sequence in which the services need to be
invoked and executed. The services that are aggregated as a business process,

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 51 of 101

or flow, can be individual services or composite services made up of individual
services.

Figure 16 Services orchestration

The business process layer covers the process representation, composition
methods, and building blocks for aggregating loosely coupled services as a
sequencing process aligned with business goals. Data flow and control flow are
used to enable interactions between services and business processes. The
interaction may exist within an enterprise or across multiple enterprises.

This layer includes information exchange flow between participants (individual
users and business entities), resources, and processes in a variety of forms to
achieve the business goal. Most of the exchanged information may also include
nonstructural and no transactional messages. Business logic is used to form
service flows as parallel tasks or sequential tasks based on business rules,
policies, and other business requirements. The layer also includes information
about data flows within the enterprise or across multiple enterprises.

The life-cycle management for business process orchestration and choreography
is also covered in this layer. In addition to the run-time process engine (for
example, WS4BPEL engine), this layer covers all aspects of composition,
collaboration, compliance, process library, process service, and invocation
elements.

On demand building process blocks allow a change from high-volume
transactional supporting technologies to a sophisticated, much smaller footprint
and less-expensive applications. In today's business solutions, business
processes play a central role in bridging the gap between business and IT.

A business process captures the activities needed to accomplish a specific
business goal. Typically, an enterprise uses both top-down and bottom-up
approaches to assure proper business process definition. Using the top-down
approach, business processes are defined by business analysts based on
customers' requirements. To optimize the business process for better IT
implementation, it is componentized as a reusable service that can be modeled,
analyzed, and optimized based on business requirements such as quality of

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 52 of 101

service (QoS) described in layer 7, flow preference, price, time of delivery, and
customer preferences. Using a bottom-up approach, after creating a set of
assets, we would try to leverage them in a meaningful business context to satisfy
customer requirements. The flexibility and extensibility of services composition
guided by business requirements and composition rules help make business
process into an on demand entity for addressing different types of customer pain
points by reusing services assets.

The business process layer communicates with the consumer layer (also called
the presentation layer) to communicate inputs and results from the various
people who use the system (end users, decision makers, system administrators)
through Web portals or business-to-business (B2B) programs. Most of the
control-flow messages and data-flow messages of the business process may be
routed and transformed through the integration layer. The structure of the
messages is most often defined by the information architecture layer. The key
performance indicators (KPIs) for each task or process could be defined in the
QoS and business intelligence layers. The design of service aggregations is
guided by the governance layer. Of course, all the services should be
represented and described by the services layer in the SOA solution stack.

From a technical perspective, dynamic and automatic business process
composition poses critical challenges to researchers and practitioners in the field
of Web services. Business processes are driven by business requirements,
which typically tend to be informal, subjective, and difficult to quantify. Therefore,
it is critical to properly formulate the descriptive and subjective requirements into
quantifiable, objective, and machine-readable formats in order to enable
automatic business process composition. In addition, the current Web services
specifications generally lack the facility to define comprehensive relationships
among business entities, business services, and operations. These relationships
may be important to optimize business process composition. Clearly specifying
search requirements to discover the most appropriate Web services candidates
remains a challenge. Last, a typical business process generally requires multiple
Web services to collaborate in order to serve business requirements. Therefore,
each service not only needs to satisfy individual requirements, but must also
coexist with other services to fit within the overall composed business process.
This suggests that the entire business process needs to be optimized prior to
execution.

Clearly, the business process layer in the SOA solution stack plays a central
coordinating role in connecting business-level requirements and IT-level solution
components through collaboration with the integration layer, QoS, and business
intelligence layer, as well as the information architecture layer and services layer.
Addressing the challenging issues that come up in the business process layer
can further differentiate the proposed SOA solution stack from conceptual
reference architectures proposed by other vendors.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 53 of 101

7.1.2.5 Consumer layer (Layer 5)

The consumer layer, or the presentation layer, provides the capabilities required
to deliver IT functions and data to end users to meet specific usage preferences.
This layer can also provide an interface for application to application
communication. The consumer layer of the SOA solution stack provides the
capability to quickly create the front end of business processes and composite
applications to respond to changes in user needs through channels, portals, rich
clients, and other mechanisms. It enables channel-independent access to those
business processes supported by various application and platforms. It is
important to note that SOA decouples the user interface from the components.
Some recent standards such as Web Services for Remote Portlets (WSRP)
Version 2.0 can be used to leverage Web services at the application interface or
presentation level. Other suitable standards include SCA components, portlets,
and Web Services for Remote Portlets (WSRP).

Adopting proven front-end access patterns (for example, portals) and open
standards (such as WSRP) can decrease development and deployment cycle
times through the use of pre-built, proven, and reusable front-end building blocks.
Use of these patterns also reduces complexity and maintenance costs through
use of those common building blocks. This practice promotes a single unified
view of knowledge presentation as well as a single unified entry point to the
supported business processes and applications. This unified entry point
integrates with other foundational services, such as security (single sign-on, for
example) and trust, and significantly improves the usability of the business
process and application. More specifically, it allows for the plug and play of
content sources (for example, portlets) with portals and other aggregating Web
applications. As a result, adopting common front-end patterns standardizes the
consumption of Web services in portal front ends and the way in which content
providers write Web services for portals.

Scenarios that motivate WSRP-like functionality include:

• Portal servers providing portlets as presentation-oriented Web services
that can be used by aggregation engines

• Portal servers consuming presentation-oriented Web services provided
by portal or non-portal content providers and integrating them into a
portal framework

The same functionality can also be obtained through non-portal environments.
WSRP allows content to be hosted in the environment most suitable for its
execution while still being easily accessed by content aggregators. The standard
enables content producers to maintain control over the code that formats the
presentation of their content. By reducing the cost for aggregators to access their
content, WSRP increases the rate at which content sources may be easily
integrated into pages for end users. It should be noted that Asynchronous
JavaScript and XML (Ajax), which is used to exchange XML contents over HTTP

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 54 of 101

without refreshing Web browsers, can be used to enhance SOA interaction
capability with Web users.

7.1.2.6 Integration layer (Layer 6)

The integration layer is a key enabler for an SOA because it provides the
capability to mediate, route, and transport service requests from the service
requester to the correct service provider. This layer enables the integration of
services through the introduction of a reliable set of capabilities. These include
modest point-to-point capabilities for tightly coupled endpoint integration as well
as more intelligent routing, protocol mediation, and other transformation
mechanisms often provided by an enterprise service bus (ESB). Web Services
Description Language (WSDL) specifies a binding, which implies the location
where a service is provided. An ESB, on the other hand, provides a location-
independent mechanism for integration.

The integration that occurs here is primarily the integration of layers 2 thru 4. This
is the layer that provides communications, invocation, and quality of service
between adjacent layers in an SOA. For example, this layer is where binding of
services occurs for process execution, allowing a service to be exposed
consistently across multiple customer-facing channels such as Web, IVR, Seibel
client, and the like. The transformation of response to HTML (for Web), Voice
XML (for IVR), XML string (for Siebel client) can be done using XSLT functionality
supported through ESB transformation capability in the integration layer.
As shown into picture below (fig 17), the integration layer does the following:

• Provides a level of indirection between the consumer of functionality and
its provider. A service consumer interacts with the service provider by
way of the integration layer. As a result, each service specification is
only exposed through the integration layer (such as an ESB and WMB),
never directly.

• Decouples consumers and providers, allowing for integration of
disparate systems into new solutions.

Figure 17 Interaction diagram of the integration layer.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 55 of 101

7.1.2.7 Quality of service layer / QoS (Layer 7)

Inherent in SOA are characteristics that exacerbate existing QoS concerns in
computer systems. Among those characteristics are:

• Increased virtualization

• Loose coupling

• Widespread use of XML

• The composition of federated services

• Heterogeneous computing infrastructures

• Decentralized SLAs

• The need to aggregate IT QoS metrics to produce business metrics

These characteristics create complications for quality of service that clearly
require attention within any SOA solution.

The QoS layer provides an SOA with the capabilities required to realize
nonfunctional requirements (NFRs). It must also capture, monitor, log, and signal
noncompliance with those requirements relating to the relevant service qualities
associated with each SOA layer. This layer serves as an observer of the other
layers and can emit signals or events when a noncompliance condition is
detected or, preferably, when a noncompliance condition is anticipated.

Layer 7 establishes non-functional requirement related issues as a primary
feature or concern of SOA and provides a focal point for dealing with them in any
given solution. This layer provides the means of ensuring that an SOA meets its
requirements with respect to reliability, availability, manageability, scalability, and
security. Finally, it enhances the business value of SOA by enabling businesses
to monitor the business processes contained in the SOA with respect to the
business KPIs that they influence.

7.1.2.8 Information architecture and BI layer (Layer 8)

The information architecture and business intelligence layer ensures the inclusion
of key considerations pertaining to data architecture and information
architectures that can also be used as the basis for the creation of business
intelligence through data marts and data warehouses. This includes metadata
content, which is stored in this layer, as well as information architecture and
business intelligence considerations.

Especially applicable to industry-specific SOA solutions, this layer captures
cross-industry and industry-specific data structures, XML-based metadata
architectures (that is, XML schema), and business protocols of exchanging
business data. Some discovery, data mining, and analytic modeling of data are
also covered in this layer.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 56 of 101

7.1.2.9 Governance layer (Layer 9)

The governance layer covers all aspects of business operational life-cycle
management in SOA. It provides guidance and policies for making decisions
about an SOA and managing all aspects of an SOA solution, including capacity,
performance, security, and monitoring. It enables SOA governance services to be
fully integrated by emphasizing the operational life-cycle management aspect of
the SOA. This layer can be applied to all the other layers in the SOA solution
stack. Since it helps enforce QoS and make appropriate application of
performance metrics, it is well connected with layer 7.

This layer can speed the SOA solution planning and design process. The
governance layer provides an extensible and flexible SOA governance
framework that includes solution-level service-level agreements based on QoS
and KPIs, a set of capacity planning and performance management policies to
design and tune SOA solutions, and solution-level security enablement
guidelines from a federated applications perspective. The architectural decisions
in this layer are encapsulated in consulting practices, frameworks, architectural
artifacts, documentation of SOA capacity planning, any SOA-solution SLAs, SOA
performance-monitoring policies, and SOA solution-level security-enablement
guidelines.

Note that we do not have a separate layer for business rules and policies.
Business rules cut across all layers. For example, business process and
governance layers intersect in defining the rules and policies for the business
process. Consumer layer validation rules, and input and output transformations
from and to that layer, must abide by some rules. These lie at the intersection
point between the consumer and governance and policy layer.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 57 of 101

8 IBM Based tools for development of SOA projects
This section covers IBM based tools for development of SOA projects. In terms of
“phases” most of SOA project has the following areas:

• Component business model area

• Service oriented modeling and architecture area

• Service oriented architecture area

The following table (tab 1) provides mapping information between IBM well
known tools (that can be use in SOA projects) and each area that was defined
above:

Areas Tools

CBM • CBM Tool

SOMA • SOA-IF

• SOMA-ME

SOA • Websphere Business Modeler

• Websphere Process Server

• UDDI Registry

• WS Registry

• Websphere ESB

• Websphere Message Broker

• Websphere Integration Developer

Table 1 Mapping table between IBM tools and methods

I would like to mention that there are lots of other tools (such as Tivoli Family for
monitoring, rational tools for testing and UML modeling, LDAP and etc.) that can
be used into SOA projects, but I will be focused only in the tools that are listed
into table above (tab 1). Those tools are selected based on my practical
experience and available free information.

8.1 SOA-IF

IBM’s SOA Integration Framework project will be a major source of next
generation SOA Best Practices. IBM’s SOA Integration Framework, brings to pilot
users “a set of Best Practices, templates, recipes and scripts for how to best use
IBM SOA technologies, including Tivoli, Websphere and Rational.

8.2 Websphere Business Modeler

WebSphere Business Modeler products help organizations fully visualize,
comprehend, and document their business processes. Rapid results can be
obtained through the collaboration functionality, where subject matter experts
team to clearly define business models and eliminate inefficiencies. You can

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 58 of 101

model business processes, then deploy, monitor, and take actions based upon
KPIs, alerts, and triggers for continuous optimization. Business processes then
get tightly linked with strategic corporate objectives. WebSphere Business
Modeler products can drive much more granular business insight and knowledge,
where knowledge equates to competitive advantage.

8.3 Websphere Process Server

WebSphere Process Server is a high-performance business engine to help form
processes to meet your business goals. Technically, WebSphere Process Server
is mounted on top of WebSphere Application Server and extends the WebSphere
Enterprise Service Bus. It uses the WebSphere Integration Developer as
development tool. Their components are:

- Service Components

• Business State Machines - A business state machine is a way of modeling
a business process, representing it as a sequence of states and events.

• Business Processes - The business process component in WebSphere
Process Server implements a WS-BPEL compliant process engine. Users
can develop and deploy business processes with support for long and
short running business processes and a robust compensation model in a
highly scalable infrastructure. WS-BPEL models can be created in
WebSphere Integration Developer or imported from a business model that
has been created in WebSphere Business Modeler.

• Human Tasks - Human tasks in WebSphere Process Server are stand-
alone components that can be used to assign work to employees or to
invoke any other service. Additionally, the Human Task Manager supports
the ad-hoc creation and tracking of tasks. Existing Lightweight Directory
Access Protocol (LDAP) directories (and operating system repositories
and the WebSphere user registry) can be used to access staff information.
WebSphere Process Server supports multi-level escalation for human
tasks, including e-mail notification. WebSphere Process Server also
includes an extensible Web client that can be used to work with tasks or
processes. This Web client is built based on a set of reusable Java Server
Faces (JSF) components that can also be used to create custom clients or
embed human task functionality into other Web applications.

• Business Rules - Business rules are a means of implementing and
enforcing business policy through the externalization of business. This
allows dynamic changes of a business process for a more responsive
business environment. Business rule authoring is supported by an Eclipse-
based desktop tool. WebSphere Process Server also includes a Web-
based runtime tool for business analysts so that business rules can be
updated as business needs dictate without affecting other SCA services.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 59 of 101

- Supporting Services

• Interface Maps

• Business Object Maps - Used to translate one type of business object
into another type, these maps can be used in a variety of ways (for
example, as an interface map to convert one type of parameter data into
another).

• Relationships

• Selectors - Different services that all share the same interface can be
selected and invoked dynamically by a selector.

• Adapters - Supports both WebSphere Business Integration (WBI)
Adapters and JCA 1.5 Compliant WebSphere Adapters.

- SOA Core

• Service component architecture

• Business Objects

• Common Event Infrastructure

8.4 UDDI Registry

The Universal Description, Discovery & Integration (UDDI) specification provides
(fig 18) a platform independent way of describing and discovering Web services
and Web service providers. The UDDI data structures provide a framework for
the description of basic service information, and an extensible mechanism to
specify detailed service access information using any standard description
language.
A business entity will be created in the UDDI registry in order to group a set of
services implemented in the project. All services will be published under this
business entity. The services will have unique names. A separate directory
exposed via a web server will be used as a repository for the services WSDL
files. Service records within UDDI will contain pointers to these WSDL files. Also
they will contain actual services’ URLs (access–points).
In the Websphere stack IBM UDDI registry can be installed on top of Websphere
Application Server, Websphere Portal Server and etc.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 60 of 101

Figure 18 Registry relationship

8.5 WS Registry and Repository

WebSphere Service Registry and Repository is a system for storing, accessing
and managing information, commonly referred as service metadata, used in the
selection, invocation, management, governance and reuse of services in a
successful SOA. WebSphere Service Registry and Repository provides both
Java and Web services interface for searching, updating, creating and deleting
service description and associated metadata. In other words, it is where you
store information about services in your systems, or in other organizations'
systems, that you already use, plan to use, or want to be aware of. For example,
an application can check the Registry & Repository just before invoking a service
to locate the service instance best satisfying its functionality and performance
needs. Registry & Repository also play a role in other stages of the SOA
lifecycle.
Our view of a Registry & Repository encompasses:

• Service Registry that contains information about services, such as their
interfaces, operations and parameters

• Metadata Repository providing a robust, extensible framework to suit
the diverse nature of service usage.

8.6 Websphere ESB

An Enterprise Service Bus (ESB) is a flexible connectivity infrastructure for
integrating applications and services. An ESB can power your service-oriented
architecture (SOA) by reducing the number, size, and complexity of interfaces
between those applications and services.
An ESB performs the following functions:

• Route messages between services

• Convert transport protocols between requester and service

• Transform message formats between requester and service

• Handle business events from disparate sources

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 61 of 101

An ESB should allow customer organizations to focus on it core business needs
rather than the IT infrastructure required for connecting the programs together.
An ESB should allow you to add new services or make changes to existing
services with little or no impact to the use of existing services.

8.7 Websphere Message Broker

WebSphere Message Broker delivers an advanced Enterprise Service Bus to
power your service-oriented architecture. It provides connectivity and universal
data transformation for both standard and non-standards-based applications and
services. The following functionalities are also included:

• Transforms and enriches in-flight information to provide a level of
intermediation between applications that use different message structures
and formats

• Enriches and distributes real-time information from disparate sources of
information through a network of access points, and provides a powerful
new means to unify organizations

• Integrates with multiple sources of data such as databases, applications,
and files to perform any type of data manipulation, including logging,
updating, and merging

• Simplifies the integration of existing applications with Web services by
transforming and routing SOAP messages, as well as logging of Web
services transactions

• Includes the functionality for customers requiring publish and subscribe
capabilities and other distribution capabilities using multiple protocols
without the powerful and adaptable transformation futures.

• WebSphere Message Broker with Rules and Formatter Extension extends
the capabilities of the Message Broker to offer continuity and compatibility
for customers who require IBM Rules and Formatter nodes.

8.8 Websphere Integration Developer

Websphere Integration Developer is a common tool for building SOA-based
integration solutions across WebSphere Process Server, WebSphere ESB, and
WebSphere Adapters.

• Simplifies integration with rich features that accelerate the adoption of
service-oriented architecture by rendering existing IT assets as service
components, encouraging reuse and efficiency

• Enables integration developers to assemble complex business solutions --
processes, mediations, adapters, or code components -- requiring minimal
skills

• Enables construction of process and integration solutions using drag-and-
drop technology without having a working knowledge of Java

• Enables rapid assembly of business solutions by wiring reusable service
components

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 62 of 101

• Integrates testing, debugging, and deployment for solution development

• Enables Business-Driven Development, fully integrating with WebSphere
Business Modeler to import models for rapid implementation

• Improves reuse and efficiency with online modules and libraries

• Operating systems supported: Linux, Windows

• Service Component architecture (fig 19)

Figure 19 Service component architecture

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 63 of 101

9 Practice solution
In this section we will go through the primary three methods that are described
above (CBM, SOMA and SOA). We will concentrate primary on SOA
implementation part. For CBM and SOMA parts we will just describe what is the
input/output from/to them.
Our practice solution will starts with typical SOA problem statement definition.
During the problem statement definition we will define customer expectations,
customer business needs and CBM map (section 4). After that we will proceed
with process decomposition (sections 3.2.2 and 5). The main idea of process
decomposition is to help us with list of candidate services. When we have a list
with all candidate services we can proceed with service identification(section 6)
where we will applied service litmus tests. When service identification is done we
will continue with service specification. For service specification we will use
Rational Software Architect and Rational Data Architect. When the services are
specified we will develop them with tools that we was defined (section 8). All
services, processes, components and database can be directly map to the layers
from SOA solution stack (section 7).

9.1 Problem statement and CBM

The Good Insurance Company (GIC) is focusing on Claims Processing for this
SOA based initiative. There were a few business sessions between senior
consultant from IBM and business person from GIC, in order to capture
information about the business context where GIS is interested. The following
notes summarize discussions during those work sessions.

After these sessions the senior consultant from IBM identified several
competencies (fig 20) for GIC. In this section we will concentrate on Claims
Management Competency. This competency covers Claim Strategy, Claim
Monitor and Claim Processing business components.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 64 of 101

Figure 20 Identified CBM map for Good Insurance Company

The focus of the work sessions is the Claim Processing business component that
is part of the Claims Management Competency.

Level Name Description

Competency Claims
Management

Provide benefit to the claimant under the terms of
the insurance agreement. The life-cycle of a claim
ranges from the recognition of something that may
result in a claim (an incident for pre-authorization
or a requested service) to the final settlement with
the client and, where applicable, the recovery of
money from re-insurers or third parties.

Business
Component

Claim
Processing

Receive a claim and record the relevant
information such as the claimant, the insurance
agreement number, the loss claimed, and the
incident to which the claim relates. This set of
activities is usually considered to represent the
opening of the claim.

Table 2 GIC CBM description Table

A customer’s policies provide coverage that covers various types of claims.
Coverage for a claim is provided by lines of business such as auto and home.
Many claims follow a traditional claims processing process, although some
claims are now classified as express claims when they meet certain criteria such
as type of damage, and can be processed more quickly.

Responsibilities of the Claim Processing business component include the
administration of first notice of loss for auto claims, and receiving claim

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 65 of 101

notifications of various types. Claims are recorded as soon as a claim notification
is received, along with claim details, and the “loss event” related to the claim.
When claim processing has not completed by a set period of time, a customer
can make a request for benefit prepayment. When that happens, a prepayment
request is recorded in the system for the related claim. Some types of claims
require special recording procedures such as “Life Death” claims, new auto and
home claims.

The “Administer Claim” process begins when a claim notification is received and
takes the claim through verification and analysis steps to its ultimate acceptance
or rejection. Recording a claim involves recording claim details and a record of
the loss event. Once a claim has been recorded, a complex verification process
takes place, followed by a claim analysis process.

Verification involves accepting loss coverage, allocating an investigation,
allocating the loss to the claimants coverage, analysis of claim history, creating
reserves to cover the loss, determining investigation requirements, evaluating the
value of the claim, identifying the specific policy that applies to the claim,
retrieving claim history, reviewing the loss event, verifying coverage and verifying
the policy.

Verification is followed by analysis of the claim. Analysis is also a complex
process that involves allocating a claim cost code, analyzing injuries and loss
circumstances, estimating the loss amount, determining if there is reason to
consider the claim to be fraudulent, determining liability for loss or injury,
evaluating damage, recording damage details, reviewing pertinent legislation,
possibly initiating litigation related to the claim and recording the results of the
investigation.
Following verification and analysis, a claim is either accepted or rejected.

9.2 Solution Overview

In this scenario we will consider the following instructions:

• Review the problem statement and CBM.

• Create a Domain Decomposition diagram that subdivides the claims
management domain into the functional areas, and identify a list of
functions associated with the functional area(s).

• Based on the narrative in the background information that senior
consultant collect from GIC, appropriate business person from IBM will
decompose “Administer Claim” process.

• Based on “Administer Claim” process decomposition architect from IBM
will create domain model.

• Based on “Administer Claim” process decomposition architect from IBM
will create a list of identified services.

• Specify identified services for “Administer Claim” process

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 66 of 101

• Implementation of specified services

9.3 SOMA

When the business consultant collect all the information that he need he starts
with customer business analysis. For “Claim Processing” the architect decides to
use Domain Decomposition (fig 21) which is a top down approach that analyzes
a high level business view of the enterprise to identify candidate services and
flows.

Figure 21 Domain Decomposition Diagram

The table below describes each function that belongs to Claim Processing
business component:

Domain: Claims Management
Functional Area: Claims Processing

Functions Description

Administer FNOL
Auto

Customer party desires to report damage on insured
car (first notice of loss information) to the financial
institute. Customer has an insured car which has
received damage to the windshield. Customer reports
the damage on the financial services provider’s internet
website in order to open a claim. Customer enters the
information about the loss and about the auto policy.
The information is stored in the financial institute’s
system for further processing and the customer
receives a loss reference number.

Receive Claim
Notification

A claim notification is received and recorded.

Record Benefit Records the request to receive a prepayment of the

Domain

Functional
Areas

Functions

Claims
Management

(PKB0029)

Claim

Processing

(PKB0004)

Administer
FNOL

Auto

(UCB0028)

Receive

Claim

Notification

(UCB0402)

Record
Benefit

Prepay Req

(UCB0404)

Record
Claim

(UCB0029)

Record
Claim

Details

(UCB0113)

Record
Claimed

Loss Event

(UCB0403)

Record
Life Death
Claim

(UCB0114)

Record
New Claim

Auto
(UCB0116)

Record

New Claim

Home

(UCB0115)

Domain

Functional
Areas

Claims
Management

Claim

Processing

Administer
FNOL

Auto

Receive

Claim

Notification

Record
Benefit

Prepay Req

Record
Claim

Record
Claim

Details

Record
Claimed

Loss Event

Record
Life Death
Claim

Record
New Claim

Auto

Record

New Claim

Home

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 67 of 101

Domain: Claims Management
Functional Area: Claims Processing

Functions Description

Prepayment
Request

benefit. In the case where after a preset period from
claim notification, the claim handling process has not
been completed, then the claimant can be allowed to
request a prepayment of part of or complete amount of
the claimed benefit. A benefit prepayment is
considered as an advance payment to the benefit
payment. This activity is a variation of record claim
notification with a reference to the claim for which the
prepayment is requested.

Record Claim

Record all elements about a claim by a party on an
insurance company. The claim description may be
received by various intermediary (for example, agent
or broker) or directly by the company (for example, a
letter, fax, or phone call). In some cases the
intermediary can ask the claimant to provide additional
information in the claim description before introducing
the claim to the insurance company. This process
description considers that the process starts when the
company receives the claim.
Process outcome is either a “recorded claim” - after this
step the claim must be recorded or “request for
additional information” - if the information is incomplete
a request for additional information is issued.

Record Claim
Details

Record the details about a claim by a party against an
insurance company. This includes recording the
claimant’s details and claim circumstances, and
checking any references to the agreements to ensure
the basic information necessary for the claim to
proceed is present. This also includes recording the
details of the claimed conditions, recording the details
of the activities, recording the details of the benefit that
is requested by the claimant, recording of the details
reported via a medical bill; it registers the claimed
medical treatment and its cost as represented on the
bill.

Record Claimed
Loss Event

Record the details of the claimed loss event.

Record Life Death
Claim

A beneficiary reports the death of one of the insured’s
covered by a life insurance policy.

Record New
Claim Auto

The customer (insured) has an insured auto which has
received damage to the windshield. He/she reports the
damage to the insurance company to open a claim.

Record New The customer (insured) has an insured home which

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 68 of 101

Domain: Claims Management
Functional Area: Claims Processing

Functions Description

Claim
Homeowners

has suffered hail damage to the roof of the home.
He/she reports the damage to the insurance company
to open a claim.

Table 3 Claim processing description

9.3.1 Process decomposition

Process decomposition (fig 22) is a very important part of Service Oriented
Modeling and Architecture. Its primary role is to prepare and decompose
business processes (base of function that are described into previous section)
three of four layers down for each business component. There are zero or more
processes that will be created for each function.

Figure 22 Process decomposition of claim processing – administer claim

9.3.2 Service identification

Based on decomposed processes the key output of the Service Identification
step is a set of candidate business services. In our scenario the following list of
candidate services (service portfolio) was identified (fig 23):

1.2.2
Record Claim

Loss Event

(UCB0403)

1.2.1
Record Claim

Details

(UCB0113)

1.3.1
Accept Loss
Coverage

(UCB0409)

1.3.2
Allocate

Investigation

(UCB0408)

1.3.3
Allocate Loss

To Coverage
(UCB0131)

1.3.4
Analyze

Claims History
(UCB0268)

1.3.5
Create

Reserves
(UCB0460)

1.3.6
Determine

Investigation Req
(UCB0260)

1.3.7
Evaluate

Claim Value

(UCB0267)

1.3.8
Identify Policy

Claimed

(UCB0130)

1.1
Receive Claim
Notification
(UCB0402)

1.2
Record
Claim

(UCB0029)

1.3
Verify
Claim

(UCB0034)

1.4
Analyze
Claim

(UCB0051)

1.5
Accept
Claim

(UCB0050)

1.6
Reject
Claim

(UCB0641)

1.3.5.1
Allocate

Reserves

(UCB0290)

1.3.5.2
Calculate Factor

Reserves
(UCB0352)

1.3.9
Retrieve

Claims History
(UCB0593)

1.3.10
Review Loss

Event

(UCB0291)

1.3.11
Verify

Coverage

(UCB0407)

1.3.12
Verify

Policy
(UCB0406)

1.4.1
Allocate Claim
Cost Code

(UCB0418)

1.4.2
Analyze
Injuries

(UCB0422)

1.4.3
Analyze Loss
Circumstances

(UCB0420)

1.4.4
Calculate Loss

Amount Estimate

(UCB0263)

1.4.12
Record

Investigate Results

(UCB0416)

1.4.5
Determine

Fraudulent Claim

(UCB0265)

1.4.6
Determine

Liability

(UCB0423)

1.4.7
Determine

Potential Fraud

(UCB0264)

1.4.8
Evaluate

Damage

(UCB0419)

1.4.9
Initiate

Litigation Case

(UCB0425)

1.4.10
Record

Damage Details

(UCB0421)

1.4.11
Record

Investigate Exp
(UCB0417)

1.4.13
Review

Legislation
(UCB0424)

1.0
Administer Claim

(UCB0057)

0. Claim
Processing

1.2.2
Record Claim

Loss Event

1.2.1
Record Claim

Details

1.3.1
Accept Loss
Coverage

1.3.2
Allocate

Investigation

1.3.3
Allocate Loss

To Coverage
1.3.4
Analyze

Claims History
1.3.5
Create

Reserves
1.3.6

Determine

Investigation Req
1.3.7

Evaluate

Claim Value

1.3.8
Identify Policy

Claimed

1.1
Receive Claim
Notification

1.2
Record
Claim

1.3
Verify
Claim

1.4
Analyze
Claim

1.5
Accept
Claim

1.6
Reject
Claim

1.3.5.1
Allocate

Reserves

1.3.5.2
Calculate Factor

Reserves

1.3.9
Retrieve

Claims History
1.3.10

Review Loss
Event

1.3.11
Verify

Coverage

1.3.12
Verify

Policy
1.4.1

Allocate Claim
Cost Code

1.4.2
Analyze
Injuries

1.4.3
Analyze Loss
Circumstances

1.4.4
Calculate Loss

Amount Estimate

1.4.12
Record

Investigate Results

1.4.5
Determine

Fraudulent Claim

1.4.6
Determine

Liability

1.4.7
Determine

Potential Fraud

1.4.8
Evaluate

Damage

1.4.9
Initiate

Litigation Case

1.4.10
Record

Damage Details

1.4.11
Record

Investigate Exp
1.4.13
Review

Legislation

1.0
Administer Claim

0. Claim
Processing

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 69 of 101

Figure 23 Service Portfolio after Process Decomposition

Initially one functional area was identified for the Claims Management domain.
When this single functional area was applied to the service portfolio it became
evident that one functional area was too broad and needed to be split into
additional functional areas:

Figure 24 Refactored Functional Areas

Domain

Functional
Areas

Claims

Management

Claim

Processing

Claim

Evaluation

Claim

Investigation

Fraud

Management

Litigation

Management

1 Administer Claim

1.1 Receive Claim Notification

1.2 Record Claim

1.3 Verify Claim

1.4 Analyze Claim

1.5 Accept Claim

1.6 Reject Claim

1.2.1 Record Claim Details

1.2.2 Record Claim Loss Event

1.3.1 Accept Loss Coverage

1.3.2 Allocate Investigation

1.3.3 Allocate Loss to Coverage

1.3.4 Analyze Claims History

1.3.5 Create Reserves

1.3.5.1 Allocate Reserves

1.3.5.2 Calculate Factored Reserves

1.3.6 Determine Investigation

Requirements

1.3.7 Evaluate Claim Value

1.3.8 Identify Policy Claimed

1.3.9 Retrieve Claims History

1.3.10 Review Loss Event

1.3.11 Verify Coverage

1.3.12 Verify Policy

1.4.1 Allocate Claim Cost Code

1.4.2 Analyze Injuries

1.4.3 Analyze Loss Circumstances

1.4.4 Calculate Loss Amount Estimate

1.4.5 Determine Fraudulent Claim

1.4.6 Determine Liability

1.4.7 Determine Potential Fraud

1.4.8 Evaluate Damage

1.4.9 Initiate Litigation Case

1.4.10 Record Damage Details

1.4.11 Record Investigation Expense

1.4.12 Record Investigation Results

1.4.13 Review Legislation

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 70 of 101

This is reflected in the service hierarchy shown below (fig 25):

Figure 25 Service hierarchy

After identification of candidate services we need to apply the Service Litmus
Test to determine which candidate services are appropriate to expose. The
Service Litmus Test is a defined set of criteria to resolve whether a candidate
service should be exposed. The criteria fall into four major areas:

• Business alignment SLT1: Focusing on business relevance of the
service, the presence of a funding model to support development and
maintenance, and the ability to share the service across the organization.

• Composability SLT2: Focusing on consistency with non-functional
requirements at the composite level, consideration of state management
aspects, identifying service dependencies, and supporting
technology/platform neutrality.

• Externalized service description SLT3: Focusing on the presence of an
external service description (such as WSDL), the ability to support service

Claims Processing

� 1 Administer Claim

� 1.1 Receive Claim Notification

� 1.1.1 Receive Express Claim

Notification

� 1.1.2 Receive Traditional Claim

Notification

� 1.1.3 Receive Auto Claim

Notification

� 1.1.4 Receive Home Claim

Notification

� 1.2 Record Claim

� 1.5 Accept Claim

� 1.6 Reject Claim

� 1.2.1 Record Claim Details

� 1.2.2 Record Claim Loss Event

� 1.3.5 Create Reserves

� 1.3.5.1 Allocate Reserves

� 1.3.5.2 Calculate Factored Reserves

� 1.3.8 Identify Policy Claimed

� 1.3.9 Retrieve Claims History

Claims Evaluation

� 1.3 Verify Claim

� 1.4 Analyze Claim

� 1.3.1 Accept Loss Coverage

� 1.3.3 Allocate Loss to Coverage

� 1.3.4 Analyze Claims History

� 1.3.7 Evaluate Claim Value

� 1.3.10 Review Loss Event

� 1.3.11 Verify Coverage

� 1.3.12 Verify Policy

� 1.4.2 Analyze Injuries

� 1.4.3 Analyze Loss Circumstances

� 1.4.8 Evaluate Damage
Claims Investigation

� 1.3.2 Allocate Investigation

� 1.3.6 Determine Investigation

Requirements

� 1.4.11 Record Investigation Expense

� 1.4.12 Record Investigation Results
Fraud Management

� 1.4.5 Determine Fraudulent Claim

� 1.4.7 Determine Potential Fraud
Litigation Management

� 1.4.6 Determine Liability

� 1.4.9 Initiate Litigation Case

� 1.4.13 Review Legislation

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 71 of 101

discovery and binding via the service description, and providing meta data
as part of the service description.

• Redundancy elimination SLT4: Focusing on the ability to reuse the
candidate service across multiple composite scenarios where the specific
function is needed.

Through this set of questions and optional extensions and customizations, as
appropriate for the specific organization, the architect can make appropriate
architectural decisions regarding which services should be developed, exposed,
and managed as service implementations.
When the architect applies and restructure all services the following list of
identified services was prepared (tab 4):

Service SLT1 SLT2 SLT3 SLT1 Expose

1. Submit claim notification Pass Pass Pass Pass Yes

2. Register Claim Pass Pass Pass Pass Yes

3. Verify Claim Pass Pass Pass Pass Yes

4. Analyze Claim Pass Pass Pass Pass Yes

5. Register Customer Pass Pass Pass Pass Yes

Table 4 Litmus test table

9.3.3 Service specification

The definition of the service specification consists of multiple steps and normally
results in the creation of UML work products. This step is facilitated through the
use of architecture tooling such as the Rational Software Architect and the UML
Profile for Software Services. During this step, the service model is designed
through documenting services and their operations, defining service composition,
documenting the service non-functional aspects, defining the high-level service
message model, and specifying state management requirements.

9.3.3.1 Domain model

A domain model can be thought of as a conceptual model of a system which
describes the various entities involved in that system and their relationships. The
domain model is created to document the key concepts and the vocabulary of the
system. The model displays the relationships among all major entities within the
system and usually identifies their important methods and attributes. This means
that the model provides a structural view of the system which is normally
complemented by the dynamic views in Use Case models. An important benefit
of a domain model is to describe and constrain system scope.
The domain model can be used at a low level in the software development cycle
since the semantics shown therein can be used in the source code. Entities
become classes, while methods and attributes can be carried directly to the
source code; the same names typically appear in the source code relationship.
In our scenario (for Good Insurance Company) the following domain model (fig
26) was specified into Rational Software Architect v7.0:

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 72 of 101

Figure 26 Domain model diagram

• ClaimDocument – This complex business object (BO) provides all
necessary data that is needed for Administer Claim process.

• Status – This BO holds the current status of ClaimDocument.

• DemageEvent – This complex BO contains the information about damage
event that was appearing.

• Damage – It has a list with damages that was happened thought damage
event.

• ClaimResult – It contains all IDs that has been generated during Claim
Registration

• ValidationResultCD – It contains all errors that may appear during
execution of ClaimValidation service.

• ValidationCD – It holds each validation data that can appear.

• Person – It contain human personal information.

• InsurancePolicy – This complex BO has information about insurance
policy.

• PersonRegisrtationResult – It contains all IDs that will be generated during
person registration service

• IPType – It contains information about insurance policy type (Auto and
Homeowners).

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 73 of 101

• Address – It holds the address data for Person BO.

• ValidationResultP – It contains list with errors that appear during validation
process.

• ValidationP – It contains code and description if there is an error during
validation process

9.3.3.2 Components & Interface Specification

This layer contains software components, each of which provide the
implementation for, realization of, or operation on a service, which is why it's
called a service component. Service components reflect the definition of a
service, both in its functionality and its quality of service.
When the architect goes through the different use cases which describe
Administer Claim business process he identified few components and their
services. All components and services are described below.

9.3.3.2.1 User Component

This component (fig 27) has one Registration service. It contains one operation
registerUser. This operation takes as input Person BO and returns as output
operation state (successful/unsuccessful).

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 74 of 101

Figure 27 User component diagram

9.3.3.2.2 Common Component

This component has two services (fig 28). The first one is AnalizeClaim. It
contains one operation analizeClaimDocument. This operation takes as input
ClaimDocument BO and returns as output ClaimDocument. The second service
is VerifyClaim. It has one operation verifyClaimDocument. This operation takes
ClaimDocument as input and returns output operation state
(successful/unsuccessful).

Figure 28 Common component diagrams

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 75 of 101

9.3.3.2.3 Claim Component

This component has two services (fig 29). The first one is RegisterClaim. It
contains one operation registerClaimDocument. This operation takes as input
ClaimDocument BO and returns as output ClaimDocument. The second service
is SubmitClaim. It has one operation submitClaimNotification. This operation
takes ClaimDocument as input and returns as output ClaimDocument.

Figure 29 Claim component diagram

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 76 of 101

9.3.3.2.4 Supporting Functions Component

This component has one PersonValidation service (fig 30). It contains one
operation - isEGNValid. This operation takes as input personal number and
checks whether is valid or not. It returns as output state
(successful/unsuccessful).

Figure 30 Supporting function component diagram

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 77 of 101

9.3.3.3 Database

This scenario use database as persistency layer in order to store all needed
information during execution of the different business processes. The logical
database was generated with Rational Data Architect from existing classes that
was defined above. The logical model was transformed into physical data model
by appropriate transformation. The physical database diagram (fig 31) illustrates
the database.

Figure 31 Physical database model

9.4 Service components (SCA)

Service Component Architecture (SCA) is a set of specifications which describe a
model for building applications and systems using a Service-Oriented
Architecture. SCA extends and complements prior approaches to implementing
services, and SCA builds on open standards such as Web services.

SCA encourages an SOA organization of business application code based on
components that implement business logic, which offer their capabilities through
service-oriented interfaces and which consume functions offered by other
components through service-oriented interfaces, called service references. SCA
divides up the steps in building a service-oriented application into two major
parts:

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 78 of 101

• The implementation of service components which provide services and
consume other services.

• The assembly of sets of components to build business applications,
through the wiring of service references to services.

SCA emphasizes the decoupling of service implementation and of service
assembly from the details of infrastructure capabilities and from the details of the
access methods used to invoke services. SCA components operate at a
business level and use a minimum of middleware APIs.

SCA supports service implementations written using any one of many
programming languages, both including conventional object-oriented and
procedural languages such as Java™, PHP, C++, COBOL, XML-centric
languages such as BPEL and XSLT, and also declarative languages such as
SQL and XQuery. SCA also supports a range of programming styles, including
asynchronous and message-oriented styles, in addition to the synchronous call-
and-return style.

SCA supports bindings to a wide range of access mechanisms used to invoke
services. These include Web services, Messaging systems and CORBA IIOP.
Bindings are handled declaratively and are independent of the implementation
code. Infrastructure capabilities, such as Security, Transactions and the use of
Reliable Messaging are also handled declaratively and are separated from the
implementation code. SCA defines the usage of infrastructure capabilities
through the use of Policies, which are designed to simplify the mechanism by
which the capabilities are applied to business systems.

SCA also promotes the use of Service Data Objects to represent the business
data that forms the parameters and return values of services, providing uniform
access to business data to complement the uniform access to business services
offered by SCA itself.

The SCA specification is divided into a number of documents, each dealing with
a different aspect of SCA. The Assembly Model deals with the linking of
components through wiring. The Assembly Model is independent of
implementation language. The Client and Implementation specification deals with
the implementation of services and of service clients -- each implementation
language has its own Client and Implementation specification, which describes
the SCA model for that language.

9.4.1 Business Processes

Two business processes was identified for the scope of this scenario:

• Administer Claim (fig 32).

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 79 of 101

Figure 32 Administer claim business process

• Person Registration (fig 33)

Figure 33 Person registration business process

9.4.2 Person Registration

Person registration business process has two main steps. The first one is person
validation and the second one is person registration. If there is validation error
during its first step, the process returns the list XML keys and their error
description. The following figure (fig 34) illustrates the main logic of the process.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 80 of 101

Figure 34 Person registration logic

9.4.3 Administer Claim

Administer claim business process has three main steps. The first one is “claim
validation”. If there is validation error during its first step, the process returns the
list XML keys and their error description. The second step is “claim analysis”
where analyze service evaluate all the damages that will be passed with the
claim. The following figure (fig 35) illustrates the main logic of the process.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 81 of 101

Figure 35 Administer claim logic

9.4.4 Claim ragistration

For the purpose of this scenario all five services was implemented into
Websphere Integration Developer as Service Component Architecture (SCA)
components with java implementation (fig 36).

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 82 of 101

Figure 36 Claim registration component

The following was implemented into ClaimRegistration SCA component:

public DataObject registerClaimDocument(DataObject inClaimDocument) {

DB2Connector connector = null;
try
{

//Save claim document data

 connector = new DB2Connector();
 connector.createConnection();

int claimDocumentID = connector.saveClaimDocument (inClaimDocument.getDate
("date") ,inClaimDocument.getInt("personID"));

 DataObject status = inClaimDocument.getDataObject("status");
int status_id = connector.saveStatus(claimDocumentID,status.getInt("status"),
status.getString("description"));

 DataObject damageEvent = inClaimDocument.getDataObject("damage");
int damageEventID = connector.saveDamageEvent(claimDocumentID,
damageEvent.getString("description"),damageEvent.getString("event"));

 List damagesList = (List)damageEvent.get("damages");

 //Create ClaimResult BO
 ServiceManager serviceManager = new ServiceManager();

BOFactory bof = (BOFactory)serviceManager.locateService
("com/ibm/websphere/bo/BOFactory");

 DataObject claimResult = bof.create("http://Common/", "ClaimResult");
 claimResult.setInt("claimDocID",claimDocumentID);
 claimResult.setInt("damageeventID",damageEventID);
 int damageID = 0;
 for(int i=0;i<damagesList.size();i++)
 {
 DataObject damage = (DataObject)damagesList.get(i);

damageID = connector.saveDamages (damageEventID,
damage.getDouble("amount"),
damage.getString("description"),damage.getString("damage"));

 }
 //Set updated values to ClaimResult BO
 inClaimDocument.setDataObject("claimresult",claimResult);
 inClaimDocument.setInt("claimDocumentID",claimDocumentID);
}
catch(Exception ex)
{
 ex.printStackTrace();
}
finally
{
 if(connector != null)
 connector.closeConnection();
}
return inClaimDocument;
}

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 83 of 101

10 Conclusion
In this Master thesis will explore an SOA architecture, which provides roadmaps
and guidelines for architectural, design, and implementation decisions.
Additionally, it provides patterns and insights for integrating these aspects. As
part of that reference architecture, reusable assets are being created to enable
end-to-end, SOA-based business solutions that cover enterprise modeling,
business process modeling, service modeling, as well as integration and
management of business applications.

10.1 SOA solutions overview

Project-based SOA solutions (fig 37) typically result from a bottom-up, technical
focus, providing an entry point for SOA design and development, but offering
minimal benefits from an enterprise architecture standpoint.
Designing SOA solutions with a business focus links business requirements and
the IT development process at the enterprise level. Defining SOA as the key
enabling architecture provides the foundation platform for enterprise solution
development. This realization of SOA as a core enterprise solution approach lets
requirements be defined and scoped based on the core business competencies
of the organization. With these business and IT requirements as input, SOA
solutions can be optimally designed through service development methodologies
such as SOMA. This approach to designing SOA solutions can provide for an
enterprise-level view of services, and offers the ability to decrease time-to-market
for new applications, while reducing IT resource exposure through service reuse.
More importantly, the design of SOA solutions with a business focus ensures the
relevancy and the value of SOA to the organization.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 84 of 101

Figure 37 SOA approach

10.2 Possible feature work

There section covers some feature extension that was identified from the author
of this master thesis:

• The goal of the SOA solution stack is to provide templates and guidelines
to help architects facilitate and automate the process of modeling and
documenting the architectural layers, building blocks, options, product
mappings, and architectural and design decisions that contribute to the
creation of an SOA.

• There is no defined pattern about service identification for SOMA. Let’s
assume that we have candidate system that needs to be analyzed
(existing assets analysis) and this system has standard three layers
architecture.

• There is no way to generate flat WSDL file. The tools need to be more
flexible. Some tools have such kind of constraints. They can only work
with flatten WSDL files.

• Ability to connect to COM components in order to exchange data with
them.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 85 of 101

• There is no tool where you can model CBM, SOMA and SOA. It will be
better all Business Analysis, Architects and Developer to work together.

• There is no way to generate screens from domain model. It will be better if
developer can generate screens based on XSD schemas. If we have that
all constraint that are part from XSD schemas will reflect to the screans.

• There is no way to perform reverse engineering between CBM, SOMA,
SOA services.

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 86 of 101

Abbreviations

[1] CBM – Component Business Model

[2] SOMA – Service Oriented Modeling and Architecture

[3] SOA – Service Oriented Architecture

[4] SCA – Service Component Architecture

[5] COM – Component Object Model

[6] WSDL - Web Services Description Language

[7] XSD - XML Schema Definition

[8] XML - Extensible Markup Language

[9] JMS – Java Messaging Service

[10] PHP - PHP Hypertext Preprocessor

[11] SQL - Structured Query Language

[12] XQuery - XML Query Language

[13] BO – Business Object

[14] ESB – Enterprise Service Bus

[15] UDDI - Universal Description, Discovery & Integration

[16] WBI - WebSphere Business Integration

[17] JSF – Java server Faces

[18] BPEL - Business Process Execution Language

[19] KPI – Keep Performance Indicator

[20] NFRs - Nonfunctional Requirements

[21] HTML – Hyper Text Markup Language

[22] WSRP - Web Services for Remote Portlets

[23] B2B – Business to Business

[24] SLAs - Service-Level Agreements

[25] ABB - Architectural Building Blocks

[26] API – Application Interface

[27] RUP – Rational Unified Process

[28] SOAP – simple Object Access Protocol

[29] UML Unified Modeling Language

[30] RPC - Remote Procedure Call

[31] DCOM - Distributed Component Object Model

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 87 of 101

References

Books:

[1] Rational Unified Process 7.1

[2] Designing SOA with a business focus, Scott Simmons, 2007

[3] Components Business Model, 2005

[4] Model-Driven Development of SOA Services, Christian Emig, Karsten Krutz,

Stefan Link, Christof Momm, Sebastian Abeck

[5] Analysis and Design Techniques for Service-Oriented Development and

Integration, Olaf Zimmermann, Niklas Schlimm, Günter Waller, Marc Pestel

Web resources:

[6] http://en.wikipedia.org/wiki/Service-oriented_architecture

[7] http://www.ibm.com/developerworks/library/ar-archtemp/

[8] http://www.redbooks.ibm.com/redbooks/pdfs/sg247356.pdf

[9] http://www.ibm.com/developerworks/library/specification/ws-sca/

[10] http://www.idevnews.com/IntegrationNews.asp?ID=172

[11] http://www.tusc.com.au/utilities/solution_details.php?id=28

[12] www.ibm.com/software/integration/wps/

[13] www.oasis-open.org/committees/uddi-spec/doc/tns.htm

[14] www.ibm.com/software/integration/wsrr/library/faqs.html

[15] www.ibm.com/software/integration/esb

[16] www.ibm.com/software/integration/wbimessagebroker/

[17] www.ibm.com/software/integration/wid/

[18] www.ibm.com/software/awdtools/architect/swarchitect/

[19] http://www-306.ibm.com/software/data/integration/rda/

[20] www.ibm.com/db2

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 88 of 101

Appendix A – Run Administer Claim Process

This appendix illustrates the execution of Administer Claim business process.
The picture bellow (fig 38) illustrates the appropriate way how to test our
business processes into Websphere Integration Developer (WID). To do that we
need to starts WID integrated test client. After that into right side we should
specify the Module, Component, Interface and Operation that we would like to
test.

Figure 38 Integrated test client request screen

When we enter the required request data for Administer Claim business process,
the following result screen appear (fig 39):

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 89 of 101

Figure 39 Integrated test client response result

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 90 of 101

Appendix B – SCA Components Implementation

public DataObject isEGNValid(DataObject inPerson) {

String egn = inPerson.getString("egn");
DataObject personValidation = null;
ServiceManager serviceManager = new ServiceManager();
BOFactory bof =
(BOFactory)serviceManager.locateService("com/ibm/websphere/bo/BOFactory");
DataObject validationP = null;
List validationList = new ArrayList();
personValidation = inPerson.getDataObject("personvalidation");
if(egn.length() != 10)
 {
 personValidation.setBoolean("isError",true);
 validationP = bof.create("http://Common/", "ValidationP");
 validationP.setString("code","Person.egn");
 validationP.setString("description","The lenght of the field is not
ten");
 validationList.add(validationP);
 }
try
{
 Long.parseLong(egn);
}
catch(Exception ex)
{
 personValidation.setBoolean("isError",true);
 validationP = bof.create("http://Common/", "ValidationP");
 validationP.setString("code","Person.egn");
 validationP.setString("description","This field should contains numbers
only");
 validationList.add(validationP);
}
if(validationList.size() > 0)
 personValidation.set("validationp",validationList);
return inPerson;
}

public DataObject registerUser(DataObject person) {

DB2Connector connector = null;
try

{

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 91 of 101

 // Save person data
 connector = new DB2Connector();
 connector.createConnection();
 int person_id =
connector.savePerson(person.getString("egn"),person.getString("name"),person.
getString("phone"));
 List addresses = person.getList("address");
 DataObject address = (DataObject)addresses.get(0);
 int address_id =
connector.saveAddress(person_id,address.getInt("zip"),address.getString("street
"),address.getString("city"));
 List policies = person.getList("insurancepolicy");
 DataObject insurancepolicy = (DataObject)policies.get(0);
 int insurance_id =
connector.saveInsurance(person_id,insurancepolicy.getDate("dateFrom"),insura
ncepolicy.getDate("dateTo"));
 DataObject iptype = insurancepolicy.getDataObject("iptype");
 int iptype_id =
connector.saveIPType(insurance_id,iptype.getInt("typeID"),iptype.getString("desc
ription"));

 // Set IDs
 person.setInt("personID", person_id);
 insurancepolicy.setInt("insurancePolicyID",insurance_id);

 // Create result business object
 ServiceManager serviceManager = new ServiceManager();
 BOFactory bof =
(BOFactory)serviceManager.locateService("com/ibm/websphere/bo/BOFactory");
 DataObject validationP = null;
 DataObject personRegistrationResult =
bof.create("http://Common/", "PersonRegistrationResult");
 personRegistrationResult.setInt("person_id",person_id);
 personRegistrationResult.setInt("policy_id",insurance_id);
 System.out.println("--->Person registration complete successful");
 }
 catch(Exception ex)
 {
 ex.printStackTrace();
 }
 finally
 {
 if(connector != null)
 connector.closeConnection();
 }
return person;

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 92 of 101

}

public DataObject verifyClaimDocument(DataObject inClaimDocument) {
DataObject damageEvent = inClaimDocument.getDataObject("damage");
ServiceManager serviceManager = new ServiceManager();
BOFactory bof =

(BOFactory)serviceManager.locateService("com/ibm/websphere/bo/BOFactory");
DataObject validationResultCD = null;
DataObject validationCD = null;

 DataObject validationResult =
inClaimDocument.getDataObject("validationresult");
 List validationList = new ArrayList();
 if(damageEvent.getString("event").equals(""))
 {
 validationResult.setBoolean("isError",true);
 validationCD = bof.create("http://Common/", "ValidationCD");

validationCD.setString("code","ClaimDocument.DamageEve
nt.event");

 validationCD.setString("description","Event property doesn't
contain appopriate value.");
 validationList.add(validationCD);
 validationResult.set("validation",validationList);

 }
return inClaimDocument;
}

public DataObject analizeClaimDocuent(DataObject inClaimDocument) {
 DataObject damageEvent =
inClaimDocument.getDataObject("damage");
 List damages = (List)damageEvent.get("damages");
 Random generator = new Random(500);
 for(int i=0;i<damages.size();i++)
 {

((DataObject)damages.get(i)).setDouble("amount",generator.
nextDouble());

 }
return inClaimDocument;
}

Appendix C – DB2 Connector

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 93 of 101

This appendix provides Java code about database persistency into DB2. The
connection to the database is defined as JNDI resource into Websphere Process
Server.

public class DB2Connector {
 private Connection conn = null;
 private Context ctx= null;
 private DataSource ds = null;
 private Statement statement = null;

 public void createConnection()
 {
 try
 {
 System.out.println("--->Resource lookup jdbc/CIG_DB_DS");

// Create context for JNDI
 ctx = new InitialContext();

// Get DataSource object
ds =(DataSource)ctx.lookup("jdbc/CIG_DB_DS");
// Get connection

 conn = ds.getConnection("db2admin", "db2admin");
 }
 catch(NamingException ex)
 {
 ex.printStackTrace();
 }
 catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 }

 public void closeConnection()
 {
 try
 {
 if(ctx != null)
 {
 ctx.close();
 }
 if((conn != null) || (!conn.isClosed()))
 {
 conn.close();
 }
 }
 catch(SQLException ex)

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 94 of 101

 {
 ex.printStackTrace();
 }
 catch(NamingException ex)
 {
 ex.printStackTrace();
 }

 }

 public int savePerson(String egn,String name,String phone)
 {
 int result = 0;
 PreparedStatement stmt = null;
 try
 {
 String query = "INSERT INTO GIC.PERSON (EGN, NAME,
PHONE)"
 + "VALUES(?,?,?)";
 stmt =
conn.prepareStatement(query,Statement.RETURN_GENERATED_KEYS);
 stmt.setString(1, egn);
 stmt.setString(2, name);
 stmt.setString(3, phone);
 int res = stmt.executeUpdate();
 if(res > 0)
 {
 ResultSet rs = stmt.getGeneratedKeys();
 while(rs.next())
 result = rs.getBigDecimal(1).intValue();
 }
 }
 catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 finally
 {
 try
 {
 if(stmt != null)
 stmt.close();
 }
 catch(SQLException ex)
 {
 ex.printStackTrace();

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 95 of 101

 }
 }
 return result;
 }

 public int saveAddress(int person_id,int zip,String street,String city)
 {
 int result = 0;
 PreparedStatement stmt = null;
 try
 {

String query = "INSERT INTO GIC.ADDRESS
(PERSON_ID, ZIP, STREET, CITY)" + "VALUES(?,?,?,?)";
stmt = conn.prepareStatement(query,Statement.
RETURN_GENERATED_KEYS);

 stmt.setInt(1, person_id);
 stmt.setInt(2, zip);
 stmt.setString(3, street);
 stmt.setString(4, city);
 int res = stmt.executeUpdate();
 if(res > 0)
 {
 ResultSet rs = stmt.getGeneratedKeys();
 while(rs.next())
 result = rs.getBigDecimal(1).intValue();
 }
 }
 catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 finally
 {
 try
 {
 if(stmt != null)
 stmt.close();
 }
 catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 }
 return result;
 }

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 96 of 101

 public int saveInsurance(int person_id,Date dateFrom,Date dateTo)
 {
 int result = 0;
 PreparedStatement stmt = null;
 try
 {
 String query = "INSERT INTO GIC.INSURANCEPOLICY
(PERSON_ID, DATEFROM, DATETO)"
 + "VALUES(?,?,?)";
 stmt =
conn.prepareStatement(query,Statement.RETURN_GENERATED_KEYS);
 stmt.setInt(1, person_id);
 stmt.setDate(2, new java.sql.Date(dateFrom.getTime()));
 stmt.setDate(3, new java.sql.Date(dateTo.getTime()));
 int res = stmt.executeUpdate();
 if(res > 0)
 {
 ResultSet rs = stmt.getGeneratedKeys();
 while(rs.next())
 result = rs.getBigDecimal(1).intValue();
 }
 }
 catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 finally
 {
 try
 {
 if(stmt != null)
 stmt.close();
 }
 catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 }
 return result;
 }

 public int saveIPType(int insurancePolicyID,int typeID,String description)
 {
 int result = 0;
 PreparedStatement stmt = null;
 try

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 97 of 101

 {
 String query = "INSERT INTO GIC.IPTYPE
(INSURANCEPOLICY_ID, TYPEID, DESCRIPTION)"
 + "VALUES(?,?,?)";
 stmt =
conn.prepareStatement(query,Statement.RETURN_GENERATED_KEYS);
 stmt.setInt(1, insurancePolicyID);
 stmt.setInt(2, typeID);
 stmt.setString(3, description);
 int res = stmt.executeUpdate();
 if(res > 0)
 {
 ResultSet rs = stmt.getGeneratedKeys();
 while(rs.next())
 result = rs.getBigDecimal(1).intValue();
 }
 }
 catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 finally
 {
 try
 {
 if(stmt != null)
 stmt.close();
 }
 catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 }
 return result;
 }

 // Claim document

 public int saveClaimDocument(Date date,int personID)
 {
 int result = 0;
 PreparedStatement stmt = null;
 try
 {
 String query = "INSERT INTO GIC.CLAIMDOCUMENT
(DATE, PERSON_ID)"

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 98 of 101

 + "VALUES(?,?)";
 stmt =
conn.prepareStatement(query,Statement.RETURN_GENERATED_KEYS);
 stmt.setDate(1, new java.sql.Date(date.getTime()));
 stmt.setInt(2, personID);
 int res = stmt.executeUpdate();
 if(res > 0)
 {
 ResultSet rs = stmt.getGeneratedKeys();
 while(rs.next())
 result = rs.getBigDecimal(1).intValue();
 }
 }
 catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 finally
 {
 try
 {
 if(stmt != null)
 stmt.close();
 }
 catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 }
 return result;
 }

 public int saveStatus(int claimDocument,int status, String description)
 {
 int result = 0;
 PreparedStatement stmt = null;
 try
 {
 String query = "INSERT INTO GIC.STATUS
(CLAIMDOCUMENT_ID, STATUS, DESCRIPTION)"
 + "VALUES(?,?,?)";
 stmt =
conn.prepareStatement(query,Statement.RETURN_GENERATED_KEYS);
 stmt.setInt(1, claimDocument);
 stmt.setInt(2, status);
 stmt.setString(3, description);

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 99 of 101

 int res = stmt.executeUpdate();
 if(res > 0)
 {
 ResultSet rs = stmt.getGeneratedKeys();
 while(rs.next())
 result = rs.getBigDecimal(1).intValue();
 }
 }
 catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 finally
 {
 try
 {
 if(stmt != null)
 stmt.close();
 }
 catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 }
 return result;
 }

 public int saveDamageEvent(int claimDocument,String description, String
event)
 {
 int result = 0;
 PreparedStatement stmt = null;
 try
 {
 String query = "INSERT INTO GIC.DAMAGEEVENT
(CLAIMDOCUMENT_ID, DESCRIPTION, EVENT)"
 + "VALUES(?,?,?)";
 stmt =
conn.prepareStatement(query,Statement.RETURN_GENERATED_KEYS);
 stmt.setInt(1, claimDocument);
 stmt.setString(2, description);
 stmt.setString(3, event);
 int res = stmt.executeUpdate();
 if(res > 0)
 {
 ResultSet rs = stmt.getGeneratedKeys();

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 100 of 101

 while(rs.next())
 result = rs.getBigDecimal(1).intValue();
 }
 }
 catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 finally
 {
 try
 {
 if(stmt != null)
 stmt.close();
 }
 catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 }
 return result;
 }

 public int saveDamages(int damageEvent,double amount, String
description, String damage)
 {
 int result = 0;
 PreparedStatement stmt = null;
 try
 {
 String query = "INSERT INTO GIC.DAMAGE
(DAMAGEEVENT_ID, AMOUNT, DESCRIPTION, DAMAGE)"
 + "VALUES(?,?,?,?)";
 stmt =
conn.prepareStatement(query,Statement.RETURN_GENERATED_KEYS);
 stmt.setInt(1, damageEvent);
 stmt.setDouble(2, amount);
 stmt.setString(3, description);
 stmt.setString(4, damage);
 int res = stmt.executeUpdate();
 if(res > 0)
 {
 ResultSet rs = stmt.getGeneratedKeys();
 while(rs.next())
 result = rs.getBigDecimal(1).intValue();
 }

Process and realization of SOA centralized system Velichko Ginev Sarev

 Page 101 of 101

 }
 catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 finally
 {
 try
 {
 if(stmt != null)
 stmt.close();
 }
 catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 }
 return result;
 }

}

