
Optimal Selection of Regularization Parameters in

Wavelet Shrinkage and Visualization using

gm-waves

Master’s thesis

of

Krasimir Dobrev

Bio-medical Informatics

Faculty of Mathematics and Informatics

Sofia University

developed in Narvik University College

July 20, 2006

1

2

Abstract

The problem of non-parametric statistical regression function estimation

based on a large number of noisy observations is considered, both in the case

of uniform deterministic knots, and uniformly distributed random knots. The

smoothed (de-noised) estimator of the target function is wavelet-based, and

the smoothing (de-noising) effect is achieved by shrinking the wavelet coeffi-

cients towards zero. The usual procedure for wavelet shrinkage is based on

thresholding, and is efficient on smooth functions, but results in oversmoothing

of points of singularity of piecewise smooth or globally non-smooth functions

with fractal behaviour. For such non-smooth cases a non-threshold wavelet

shrinkage procedure has been proposed by Dechevsky, Ramsay and Penev in

[22] using Tikhonov regularization via a penalization criterion using Besov-

norm penalty. In the present work several procedures (least squares, Besov-

norm regularization, cross validation) for determining the optimal value(s)

of the regularization parameter(s) are studied in detail, including the differ-

ences in performance between the case of deterministic, and that of random,

knots. These procedures provide a step towards the design of adaptive, data-

dependent wavelet shrinkage estimators. A representative selection of exam-

ples in the 1d case (curves) and 2d case (surfaces) is given. The visualization

software developed for this purpose is in C++ and OpenGL using the library

qt and the in-house libraries gm-waves and gm-lib developed at Narvik Uni-

versity College.

CONTENTS 3

Contents

1 Introduction 5

1.1 Preliminaries . 5
1.1.1 Data fitting by wavelets . 5
1.1.2 Types of Wavelet Shrinkage 7
1.1.3 Thresholding shrinkage . 8
1.1.4 Non-thresholding shrinkage 8

1.2 Differences between deterministic and i.i.d. random nodes 13
1.3 Topics to solve . 13

1.3.1 . 13
1.3.2 . 13
1.3.3 . 14

1.4 Cross validation . 14
1.5 The software . 20

1.5.1 . 20
1.5.2 About gm-waves . 20

1.6 Generating random numbers . 21
1.6.1 Computer generated pseudo random generators 21
1.6.2 Hardware random generators 25
1.6.3 PRNG implementations . 26
1.6.4 Generating i.i.d. random variables 28
1.6.5 The rejection method. 29

2 Main results 31

2.1 Decomposing the risk into approximation and variance term 31
2.1.1 1-dimensional case . 31
2.1.2 1-dimensional case using wavelets 33

2.2 Minimizing the risk (levelwise) . 35
2.3 Minimizing the risk (same regularization parameter for all leves) . . 37
2.4 Equalizing ||f̃ ||Bs

pq
to ||f ||Bs

pq
. 38

2.5 Cross validation . 39

3 The Software 40

3.1 User Interface . 40
3.2 Mathematical model . 41
3.3 mainwindow.ui.h . 42

CONTENTS 4

3.4 Random.h . 45

4 Numerical and graphical results 48

4.1 Minimizing the risk . 48
4.1.1 λ = 0.5, δ2 = 1

12 (corresponding to white noise in [−0.5, 0.5]) 48
4.1.2 λ = 0.9, δ2 = 1

12 (corresponding to white noise in [−0.5, 0.5]) 52
4.1.3 λ = 0.5, δ2 = 1

300 (corresponding to white noise in [−0.1, 0.1]) 54
4.2 Minimizing the risk at each level . 57

4.2.1 λ = 0.5, δ2 = 1
12 (corresponding to white noise in [−0.5, 0.5]) 57

4.2.2 λ = 0.5, δ2 = 1
300 (corresponding to white noise in [−0.1, 0.1]) 58

4.2.3 λ = 0.9, δ2 = 1
300 (corresponding to white noise in [−0.1, 0.1]) 60

4.2.4 λ = 0.3, δ2 = 1
300 (corresponding to white noise in [−0.1, 0.1]) 61

4.3 Equalizing ||f̃ ||Bs
pq

to ||f ||Bs
pq

at each wavelet level 62
4.3.1 δ2 = 1

12 (corresponding to white noise in [−0.5, 0.5]) 62
4.3.2 δ2 = 1

300 (corresponding to white noise in [−0.1, 0.1]) 67

1 INTRODUCTION 5

1 Introduction

1.1 Preliminaries

1.1.1 Data fitting by wavelets

I consider the following statistical models for non-parametric regression:

Yi = f(xi) + εi, i = 1, 2, ..., N (1)

and

Yi = f(X̂i) + εi, i = 1, 2, ..., N (2)

where xi are deterministic knots (in 1-dimensional case xi = 1
2N + (i − 1) 1

N)
and X̂i are independent, uniformly distributed on [0, 1]d random variables. For the
independent identically distributed (i.i.d.) errors εi I assume Eεi = 0, Eε2

i = δ2

. I shall address the problem of estimating f in the above two problems by using
orthonormal wavelets. Till the end of this subsection I shall refer to both xi and
X̂i as Xi, since I’ll make a detailed comparison between both cases in the next
subsection.

This work is a preliminary stage to creating adaptive estimators that combine
both well known techniques for regular smooth functions and the techniques pre-
sented here which produce better results for noncontinuous and/or non-smooth
functions.

Let
•
B s

pq(Rd) and Bs
pq(Rd) be respectively the homogeneous and inhomogeneous

Besov spaces with metric indices p, q and smoothness index s. For f ∈ Bs
pq,

0 < p ≤ ∞, 0 < q ≤ ∞, d(1
p − 1)+ < s < r,

f(x) =
∑

k∈Zd

α0kφ
[0]
0k(x) +

∞∑

j=0

∑

k∈Zd

2d−1∑

l=1

β
[l]
jkφ

[l]
jk(x), a.e. x ∈ Rd (3)

holds, where α0k =
〈
φ

[0]
0k, f

〉
=

∫
Rd φ

[0]
0k(x)f(x)dx, β

[l]
jk =

〈
ψ

[l]
jk, f

〉
and z is the

conjugate of z ∈ C. Convergence in (3) is in the quasi-norm topology of the inho-
mogeneous Besov space Bs

pq(Rd).

For the homogeneous space
•
B s

pq(Rd) it can be shown that

f(x) =
∞∑

j=−∞

∑

k∈Zd

2d−1∑

i=1

β
[l]
jkψ

[l]
jk(x), a.e. x ∈ Rd (4)

1 INTRODUCTION 6

holds modulo polynomials of total degree less than r. An equivalent (quasi)-
norm of f in Bs

pq(Rd) is

||f ||Bs
pq(Rd) =






 ∑

k∈Zd

|α0k|p



q/p

+
∞∑

j=0


2j[s+d(1

2− 1
p)]


 ∑

k∈Zd

2d−1∑

l=1

|β[l]
jk|p




1
p




q


1
q

.

(5)
Analogously, for the homogeneous space

•
B s

pq(Rd) we have:

||f || •
B s

pq(Rd)
=





∞∑

j=−∞


2j[s+N(1

2− 1
p)]

(∑

k∈Zn

2n−1∑

l=1

|β[l]
jk|p

) 1
p




q




1
q

. (6)

The tensor-product basis {ϕjk, ψjk} is defined in [12] and [17]. The empirical
wavelet estimator f̂(x) is defined via:

f̂(x) =
∑

k∈Zd

α̂0kφ
[0]
0k(x) +

∞∑

j=0

∑

k∈Zd

2d−1∑

l=1

β̂
[l]
jkφ

[l]
jk(x), a.e. x ∈ Rd, (7)

where in the case of non-parametric regression (1) and (2):

α̂j0k =
1
N

N∑

i=1

ϕ[0]
j0k

(Xi)Yi, β̂
[l]
jk =

1
N

N∑

i=1

ψ
[l]
jk (Xi)Yi, (8)

The estimator f̂ can be obtained simply by replacing the coefficients in (3) and
(4) by their empirical versions, but this procedure is not as fast as the discrete
wavelet transform.

In the case of non-parametric regression the shrinkage can be obtained for sample
sizes N which are an exact power of 2, by the fast discrete wavelet transform in the
following way:

1. Transform data Y into the wavelet domain.

2. Shrink the empirical wavelet coefficients towards zero.

3. Transform the shrunken coefficients back to the data domain.

The methodology to estimate f is based on the principle of shrinking wavelet
coefficients towards zero to remove noise, which means reducing the absolute value
of the empirical wavelet coefficients β

[l]
jk.

1 INTRODUCTION 7

Wavelet coefficients having small absolute value contain mostly noise. The im-
portant information at every resolution level is encoded in the coefficients on that
level which have large absolute value.

One of the most important applications of wavelets (the noise reduction) has
begun after observing that shrinking wavelet coefficients towards zero and then re-
constructing the signal has the effect of denoising and smoothing. Donoho and
Johnstone have made this observation for the first time as a result of empirical nu-
merical experiments. Once made, this observation has found an immediate heuristic
and theoretical justification in the parallel with the classical James-Stein estimator
for the parametric case (see [32] and [37]). The transition from the non-parametric
case (when a finite-dimensional vector parameter is being estimated) to the para-
metric case (when a function, generally belonging to an infinite dimensional space,
is being estimated) has been immediate, thanks to the atomic decomposition of the
Besov space scale by biorthonormal and orthonormal wavelets (see (3)-(6)). Indeed,
if in (3)-(6) a compactly supported function f is considered, for every j the sums in
k are finite; if, additionally, the sums in j in (3)-(6) are truncated (corresponding
to a bounded frequency spectrum) then the non-parametric estimation problem is
reduced to parametric in a natural way.

1.1.2 Types of Wavelet Shrinkage

A thresholding shrinkage rule sets to zero all coefficients with absolute values below
a certain threshold level, λ ≥ 0 , whilst a non-thresholding rule shrinks the non-zero
wavelet coefficients towards zero, without actually setting to zero any of them.

In general, shrinkage methods of threshold type are appropriate for estimating of
relatively regular functions, while those of non-threshold type fit best for estimating
of spatially inhomogeneous functions.

A problem when estimating functions with low regularity and fractals is that
thresholding methods tend to oversmooth the curve since they are well adapted
for functions which gather their value on relatively few large wavelet coefficients.
Continuous fractals and functions with jumps do not fall into this case, but rather
gather their value from many wavelet coefficients on infinitely many levels. Due to
these facts, for such types of functions non-threshold shrinkage is appropriate.

The shrinkage estimator f̃ is obtained by replacing the empirical β̂jk in (7) with
their shrunken analogues β̃jk.

1 INTRODUCTION 8

1.1.3 Thresholding shrinkage

The hard and soft thresholding rules proposed by Donoho and Johnstone [27]-[29]
for smooth functions are given respectively by:

δ (x;λ) =

{
x if |x| > λ

0 if |x| ≤ λ

and

δ (x;λ) =

{
|x| − λ if |x| > λ

0 if |x| ≤ λ

(9)

where λ ∈ [0,∞) is the threshold.
The soft thresholding rule (a continuous function) is a ’shrink’ or ’kill’ rule,

while the hard thresholding rule (a discontinuous function) is a ’keep’ or ’kill’ rule.
Due to the discontinuity of the hard threshold rule, the hard shrinkage estimates
tend to have bigger variance and can be sensitive to small changes in the data. The
soft thresholding estimates tend to have bigger bias, due to the shrinkage of large
coefficients.

Gao and Bruce [30] introduced the 2-parameter firm shrinkage rule:

δ (x;λ) =





sgn(x)
λ2·(|x|−λ1)

λ2−λ1
if |x|∈(λ1,λ2]

x if |x|>λ2

0 if |x|≤λ1

(10)

Firm shrinkage has been specially designed to improve upon both hard and
soft thresholding. By choosing appropriate thresholds (λ1, λ2), firm thresholding
outperforms both hard and soft thresholding which are now simply two limiting
cases of firm thresholding; it has all the benefits of the best of the hard and soft
without the drawbacks of either. The only disadvantage of the firm shrinkage is
that it requires two thresholds. This makes threshold selection problems harder
and computationally more expensive for adaptive threshold selection procedures
such as cross-validation.

1.1.4 Non-thresholding shrinkage

Increasing interest to the study of fractals and singularity points of functions (dis-
continuities of the function or its derivatives, cusps, chirps, etc.) raises the necessity
of non-threshold wavelet shrinkage.

At this point, while threshold rules can be considered as well studied, non-
threshold rules, on the contrary, are fairly new and the corresponding theory is so

1 INTRODUCTION 9

far in an initial stage. This can be explained by the fact that traditionally only very
smooth functions were being estimated.

I shall consider a new family of wavelet-shrinkage estimators of non-threshold
type which are particularly well adapted for functions belonging to Besov spaces and
have a full, non-sparse, vector of wavelet coefficients. The approach, proposed by
Dechevsky, Ramsay and Penev in [22], parallels Wahba’s spline smoothing technique
(see [40]) for the case of fitting less regular curves. The purpose of the research done
in [22] was to study penalized wavelet estimation in Besov spaces, proposed first by
Amato and Vuza [1] in the deeper context of the theory of interpolation spaces by
using Peetre’s K-functional as a penalty criterion.

The regularity of the curve is discussed in terms of the size of its semi-norm
in the homogenous Besov spaces, with a relatively small value of the smoothness
index s > 0. The optimal solution of the penalization problem is in the form
of a wavelet expansion whose coefficients are obtained by appropriate level- and
space- dependent shrinking of the empirical wavelet coefficients. Thanks to the use
of wavelets, both density and regression estimation can be treated in a somehow
unified way.

The penalization model in [22] is defined via:

L(v, f̂ ; Bs1
p1p1

,
•
B

s
pp) := K1(v, f̂ ; (Bs1

p1p1
)p1 , (

•
B

s
pp))

p)), (11)

where Kη(t, g; A,B) is the Peetre K-functional between the quasiseminormed abelian
groups A and B of g ∈ A+B, with step t > 0 and parameter η ∈ (0,∞] and p,p1,s,s1

are such that Bs1
p1p1

←↩ Bs
pp. Here η corresponds to the norm (quasinorm for η < 1

) (| · |η + | · |η)1/η, 0 < η ≤ ∞. The risk of the estimator is the expected value of the
quasi-norm of the difference between the function and the estimator in a certain
Besov space, ||f − f̃ ||p1,q1,s1 .

The general function for shrinking in Besov spaces is given by
β̃jk = µjkβ̂jk, µjk = µjk(v) ∈ [0, 1], and can be numerically computed (see [6]) from
the following equation:

p
1
η

1 · (1− µ)p1− 1
η · |β̂jk|(p1−p) = vj · 2

j·ε
2 · p 1

η · µp− 1
η (12)

Here vj is a smoothing factor [22] and the parameters in (12) are:

0 < p ≤ p1 < ∞, max
{

1
p , 1

p1

}
< η < ∞

ε = 2ps− 2p1s1 + N(p− p1) (critical-regularity index)

(13)

1 INTRODUCTION 10

Figure 1:

1 INTRODUCTION 11

In general, the equation (12) can not be solved explicitly. However, for any
(j, k) the solution can be found by very quickly convergent iterations of the dyadic
or Fibonacci bisection method. Moreover, in many important partial cases (12)
can be solved explicitly. This is due to the fact that for the constants A =(

p
1
η

1 |β̂jk|p1−p

) 1
p1−1/η

and B =
(
vj · 2 j·ε

2 · p 1
η

) 1
p1−1/η

(12) gets the form:

A (1− µ) = Bµ
p−1/η

p1−1/η , (14)

and for p1 = p < ∞, s > s1, v = tp, p, t ∈ [0,∞), becomes linear with the unique
solution:

µjk = µj =
1

1 +
(
t · 2j(s−s1)

) p
p−1/η

(15)

It is seen from (12)-(15) that, the closer p is to 1/η, the more sensitive the model
is to variations of s, s1 and choice of vj .

It can be seen from these cases, and some others, not shown here, that for par-
ticular cases of the metric and smoothness parameters, the Besov rules include both
the non-threshold shrinkage rules and soft and hard thresholding rules. The partic-
ular combination of Besov parameters, for which the classical shrinkage estimators
occur, provide additional insight into some fine properties of functions of one and
several variables. For example, soft thresholding occurs in cases where p1 is much
larger than p, while ε has small to moderate values; if ε is large, then the respective
Besov rule (with p1 much larger than p) approximates the hard threshold rule. In
contrast, non-threshold shrinkage occurs when p1 ≈ p.

On Figure 2 is compared the distribution of approximation/ estimation error
for a typical threshold shrinkage method (soft thresholding - left column) and non-
threshold (Besov for p = p1 - right column) for the same set of noisy observations
(the non-parametric regression case) for the four functional curves considered as
test examples in [6]. It is seen from these two figures that the non-adaptive thresh-
old method oversmooths in singular points, while the non-adaptive non-threshold
method overfits in regular points; an adaptive composite estimator is needed. In
terms of absolute error (plotted centered around 0), the non-threshold estimator
fares better. In the case of the Weierstrass function which is non-smooth every-
where, the non-threshold estimator performs much better everywhere (see Figure
1.1.4).

Let us note also the important Lorentz-type thresholding (see [14]) in the gen-
eral context of Besov spaces which was discovered in [6], Appendix B, item B10
(b), where it was shown that this type of thresholding is closely related to the

1 INTRODUCTION 12

[tb]

Figure 2:

1 INTRODUCTION 13

concept of decreasing rearrangement and the respective representation of Peetre’s
K-functional.

1.2 Differences between deterministic and i.i.d. random nodes

The difference between both models for NR (1) and (2) is that the residual error of
the quadrature for is unbiased in case of independent identically distributed (i.i.d.)
random nodes (2) and biased in case of deterministic uniformly distributed nodes
(1).

Here we simple quadrature formulaes because the risk is decomposed into biased
and variance term (see [18] and [19]) which have to be balanced in size. If I use
more sophisticated quadrature formulae the biased term of the risk will decrease
but the whole risk will increase due to the increase of the variance term.

The results in the theory for i.i.d. random nodes are better but in practice in
order to achieve the same results I have to use much more nodes than in the case of
deterministic nodes. Another practical disadvantage of i.i.d random nodes is that
they are more difficult for implementation.

1.3 Topics to solve

In the context of the above my task is to solve all of the following. Most of the

experiments will be performed for λ-tear f(x) = |x|λe
−x2

1−x2 , x ∈ (−1, 1), f(x) =
0 elsewhere on R.

1.3.1

Comparison between deterministic and independent identically distributed random
nodes using the least square method (the Bs

22 norm). In this task I should find
optimal values vj for each wavelet level so as the shrinkage estimator f̃ is obtained
by replacing the empirical β̂jk in (8) with their shrunken analogues

β̃jk =
1

1 + 22jsvj
β̂jk

.

1.3.2

Finding a single optimal value v for all wavelet levels and producing the following
estimator:

1 INTRODUCTION 14

β̃jk =
1

1 + 22jsv
β̂jk

and visualizing the results.

1.3.3

Producing the estimator f̃ so as:

||f̃ ||Bs
pq(Rn) = ||f ||Bs

pq(Rn)

and computing the average values of M consecutive executions. The values of s, p

and q for the lambda tear can be found in [22]. Comparing the improvement when
the norm is equalized for each wavelet level. Visualizing the results.

1.4 Cross validation

It has often been remarked in the statistical literature on smoothing that cross val-
idation in the Lebesgue space L2 may sometimes underestimate the value of the
smoothing parameter, resulting in a tendency to overfit the curve. Analytically,
this can be explained by the fact that, in general, L2-cross validation leads to con-
sistent estimation of the function itself, but not of its fractional derivatives. In [23]
we introduce in detail the theoretical reasons for this phenomenon and to what
extent the problems related to it can be overcome by considering cross validation
in the Besov spaces Bσ

22, σ > 0, as previously proposed in [22]. (Note that L2-cross
validation is a particular case of Bσ

22-cross validation, with σ = 0.) If we wish to
study both the case of density estimation (DE) and nonparametric regression (NR)
in a unified way, we should consider penalized estimation using cross-validation.
Cross-validation is based on an intuitively appealing technique for selection of the
smoothing parameter in the smoothing-spline technique of statistical estimation of
curves with noisy data (see Craven and Wahba [13] and Wahba [40]). This is a
generalization of the penalized smoothing-spline technique of Anselone and Lau-
rent [5] for solving deterministic smoothing problems. Many other authors have
used cross-validation techniques, both ordinary and generalized, in kernel density
estimation, in spline-smoothing and in wavelet approaches for non-parametric re-
gression, density estimation and other statistical problems. We cite, in particular,
Amato and Vuza [1, 2], Antoniadis [3, 4], Barron et al [13], Birgé and Massart [7],
Cox [14] , DeVore et al [25], DeVore and Lucier [26], Gasser and Müller [31], Jansen
et al [33], Nason [35], Tribouley [38], Utreras [41].

1 INTRODUCTION 15

In [23] we consider, in particular, cross validation (CV) of weak, or Bowman-
Rudemo type, (Bowman [8], Rudemo [36] i.e., CV where the estimation of the
pointwise linear interpolation functionals Li(f) = f(xi) is replaced by estimation
of the linear functionals f 7−→ α

[0]
j0k and f 7−→ β

[`]
jk , where α

[0]
j0k and β

[`]
jk are inner

product integrals defining the wavelet coefficients of f . As we shall see, the case
of Bowman-Rudemo CV for NR with uniform random design can be treated quite
similarly to DE. As a consequence of the random design, we shall be able to study
multidimensional CV for both DE and NR; simultaneously namely, the support
(supp f) or domain of f , for both DE and NR, will be assumed to be a bounded
d-dimensional subset of Rd, d ∈ N.

Weak type L2-cross validation is equivalent to applying the cross-validation rule

α̃
[0]
j0kα

[0]
j0k 7−→

1
n

n∑

i=1

α̃
[0]
j0k(−i)ϕ

[0]
j0k(Xi), β̃

[`]
jkβ

[`]
jk 7−→

1
n

n∑

i=1

β̃
[`]
jk(−i)ψ

[`]
jk(Xi),

for DE, and

α̃
[0]
j0kα

[0]
j0k 7−→

1
n

n∑

i=1

α̃
[0]
j0k(−i)Yiϕ

[0]
j0k(Xi), β̃

[`]
jkβ

[`]
jk 7−→

1
n

n∑

i=1

β̃
[`]
jk(−i)Yiψ

[`]
jk(Xi),

for NR, for every (j, k, l) : j0 ≤ j ≤ j1, supp ϕ
[0]
j0k

⋂
supp f 6= ∅, supp ψ

[`]
jk

⋂
supp

f = ∅, where the functions ϕ
[0]
j0k, ψ

[`]
jk are introduced in Section 2, together with

j0, j1, k and `; α̃
[0]
j0k = α̂

[0]
j0k, α̃

[0]
j0k(−i) = α̂

[0]
j0k(−i), β̃

[`]
jk =

β̂
[`]
jk

1+ν22js , β̃
[`]
jk(−i) =

β̂
[`]
jk(−i)

1+ν22js ,

α̂
[0]
j0k =

1
n

n∑

i=1

ϕ
[0]
j0k(Xi), β̂

[`]
jk =

1
n

n∑

i=1

ψ
[`]
jk(Xi),

α̂
[0]
j0k(−i) =

1
n− 1

n∑

x=1,x6=i

ϕ
[0]
j0k(Xx), β̂

[`]
jk(−i) =

1
n− 1

n∑

x=1,x6=i

ψ
[`]
jk(Xx),

for DE,and

α̂
[0]
j0k =

1
n

n∑

i=1

Yiϕ
[0]
j0k(Xi), β̂

[`]
jk =

1
n

n∑

i=1

Yiψ
[`]
jk(Xi),

α̂
[0]
j0k(−i) =

1
n− 1

n∑

x=1,x 6=i

Yxϕ
[0]
j0k(Xx), β̂

[`]
jk(−i) =

1
n− 1

n∑

x=1,x 6=i

Yxψ
[`]
jk(Xx)

for NR. (Here and henceforth we assume for the NR model, with no loss of generality,
that supp f is contained in the unit hypercube of Rd). As indicated in [22], B1,
this type of cross validation rules leads to the following respectively cross validation
criteria:

1 INTRODUCTION 16

Φσ(ν) =
∑

k

α̂
[0]
j0k +

j1∑

j=j0

22jσ
∑

k

2d−1∑

`=1

β̃
[`]
jk(−i)(ν)2

− 2
n

n∑

i=1


∑

k

α̂
[0]
j0k(−i)ϕ

[0]
j0k(Xi) +

j1∑

j=j0

22jσ
∑

k

2d−1∑

`=1

β̃
[`]
jk(−i)(ν)ψ[`]

jk(Xi)


 ,(16)

for DE, and

Φσ(ν) =
∑

k

α̂
[0]
j0k +

j1∑

j=j0

22jσ
∑

k

2d−1∑

`=1

β̃
[`]
jk(−i)(ν)2

− 2
n

n∑

i=1


∑

k

α̂
[0]
j0k(−i)Yiϕ

[0]
j0k(Xi) +

j1∑

j=j0

22jσ
∑

k

2d−1∑

`=1

β̃
[`]
jk(−i)(ν)Yiψ

[`]
jk(Xi)


 ,(17)

for NR, which corresponds to Bσ
22-cross validation, σ ≥ 0. For σ = 0, (1)

corresponds to the L2-cross validation criterion considered in [22], Subsection 6.2.
As we shall see, cross validation with respect to the criteria ([10], [11]) (or Bσ

22-cross
validation, for short) can be studied in a unified way. In fact, our main results (see
Section 3) are formulated simultaneously for NR and DE, and it will be informative
to trace the parallels, as well as the differences, in the proofs for the two different
models.

We shall formulate the results in this section simultaneously, for both NR and
DE. Detailed proofs will be given for the more technically involved NR case, but
a parallel discussion of the analogous arguments for DE will also be included. We
recall that throughout this section it is implicitly assumed that f is compactly
supported, with supp f contained within the unit hypercube Ω in Rd, centered at
the origin, that in the case of NR Xi, i = 1, · · · , n, are uniformly distributed on
Ω, and that the 1-periodized version of (3) is being considered.

Theorem 1 (Sufficient condition for existence of the ν-minimizer.) Consider NR
and DE. Let 0 ≤ σ ≤ s′ < s < r. Assume that the penalized model is via
K2

(√
ν, f ;L2(Rd), Ḃs

22(Rd)
)
, f ∈ L∞(Rd)

⋂
Bs′
∞∞(Rd), and that j0 ≤ j1, j1 →∞,

and 2j1 = O(n
1
d). Assume that either j0 = O(1) and f /∈ Vj for any j < j0

or j0 → ∞, f /∈ Vj for any j ∈ Z and the index s′ is completely sharp. Let
{λj}∞j=j0

∈ `2. If one of the three mutually exclusive cases holds:

(i) s < d+2σ
4 and 2j1d−2(2s−σ)(j1−j0)−2j0(s−s′) = o(n);

1 INTRODUCTION 17

(ii) s = d+2σ
4 and 22j0(s+s′−σ)(j1−j0+1) = o(n);

(iii) s > d+2σ
4 and 2j0[d−2(s−s′)] = o(n);

then, for sufficiently large n there exists ν̃ : Ψσ(ν̃) = minν≥0 Ψσ(ν), with 0 <

ν̃ < C, where Ψσ(ν) = E‖f̃ν − f‖2Bσ
22

, for both NR and DE. Moreover, if

(i’) s < d−2(s′−2σ)
4 and

j0 = O(1), 2j1[d+2s′−4(s+s′−σ)] = o(n), or
j0 →∞, 2j1(d+2s′)−4(s+s′−σ)(j1−j0) = O(nλ2

j0
), or

(ii’) s = d−2(s′−2σ)
4 and

j0 = O(1), or
j0 →∞, 2j0(s+s′−σ)(j1 − j0 + 1) = O(n

1
2 λj0), or

(iii’) s > d−2(s′−2σ)
4 , and

j0 = O(1), or
j0 →∞, 2j0(d+2s′) = O(nλ2

j0
),

and if one of the following holds

(i”) s < σ + d
2 and 2j1(d+2s′)−2(s+s′−σ)(j1−j0) = o(nλ2

j0
);

(ii”) s = σ + d
2 and 2j0(s+s′−σ)(j1 − j0 + 1) = o(nλ2

j0
);

(iii”) s > σ + d
2 and 2j0(d+2s′) = o(nλ2

j0
);

then, with probability tending to 1 as n → ∞, there exists ν? : Φσ(ν?) =
minν Φσ(ν), with 0 < ν? < C. The constant C : 0 < C < ∞ depends on f, ϕ, ψ for
DE and also on δ for NR.

Remark 1 In view of σ < s, the cases (i) and (ii) can be fulfilled only when
s < d

2 . Therefore, smooth functions are being estimated under the assumption (iii).
If σ = s′, then conditions (i - iii) and (i’ - iii’) coincide.

Theorem 2 (consistency of cross validation in Bσ
22, σ ≥ 0.) Consider both NR

and DE. Assume that 0 < s′ ≤ s < r, EW 4
1 = ∆2 < ∞, that the penalized model

is via K2

(√
ν, f ;L2(Rd), Ḃs

22(Rd)
)
, and that f ∈ L∞(Rd)

⋂
Bs′

22(Rd) holds. Let

0 ≤ σ ≤ s′
2 and σ < d

2 . Let j0 ≤ j1, with j0 →∞ and 2j1 = O(n
1
d),

2−j0 = o

(
2−2j1σ/d

(j1 − j0 + 1)
1
d

)
(18)

1 INTRODUCTION 18

and

2−j0 = O
(
n
− 1

2(d+s′−2σ)

)
(19)

Then, for any ν ≥ 0,

Φσ(ν)−Ψσ(ν) + Tn

Ψσ(ν)
P−→

n→∞
0 (20)

holds, where

Tn =
∑

k

α
[0]
j0k

2 −
j1∑

j=j0

22jσ
∑

k

2d−1∑

`=1

β
[`]
jk

2
+

2(n + 1)
n

∑

k

2d−1∑

`=1

α̂
[0]
j0kα

[0]
j0k

−2(n + 1)
n

∑

k

2d−1∑

`=1

α
[0]
j0k

2

is a quantity which does not depend on ν and

Tn −
∑

k

2d−1∑

`=1

α
[0]
j0k

2 −
∞∑

j=j0

22jσ
∑

k

2d−1∑

`=1

β
[`]
jk

2 P−→
n→∞

0

holds. If, moreover, ν depends on the sample size n and

ν = νn = o

(
2−j1σ+(2s− d

2−σ)

√
j1 − j0 + 1

)
, (21)

then the conditions σ < d
2 and (18) can be removed.

Remark 2 When σ ≥ d
2 , the range of admissible σ in Theorem 2 can be broadened

considerably, if an upper asymptotic rate for ν → 0 is known (see (??), cf. Remark
3).

Corollary 1 (Consistency in the choice of the ν-minimizer.) Consider both NR
and DE. Under the conditions of Theorem 1, in the case σ < d

2 ,

Ψσ(ν?)
Ψσ(ν̃)

P−→
n→∞

1 (22)

holds. If the constraint σ < d
2 and (??) are replaced by (??), then

Ψσ(ω?)
Ψσ(ω̃)

P−→
n→∞

1 (23)

1 INTRODUCTION 19

still holds true, where ω? = min(ν?, ω), ω̃ = min(ν̃, ω), with (cf. (??))

ω = ωn = o

(
2−j1σ+(2s− d

2−σ)

√
j1 − j0 + 1

)
. (24)

Theorem 3 (Consistency of estimation in Bσ
22, σ ≥ 0, via f̃ν̃ .) Consider both

NR and DE. Assume that 0 < s′ ≤ s < r, 0 ≤ σ ≤ s′, the penalized model is via
K2

(√
ν, f ;L2(Rd), Ḃs

22(Rd)
)
, f ∈ L∞(Rd)

⋂
Bs′

22(Rd), and that j0 ≤ j1, j1 → ∞.
Assume also that f /∈ Vj, where j < j0 if j0 = O(1) and j ∈ Z if j0 → ∞.
If j0 = O(1) and ν = νn is bounded, then the condition ν → 0 is necessary for
Ψσ(ν) → 0 to hold as n →∞. Moreover, if j0 = O(1), σ < s′, and 2j1 = o

(
n

1
d+2σ

)

holds, then ν → 0 is also a sufficient condition for Ψσ(ν) → 0 to hold as n → ∞.
If 2j1 = o

(
n

1
d+2σ

)
, with j0 → ∞ and σ ≤ s′, then only boundedness of ν = νn is

already sufficient for Ψσ(ν) to hold as n → ∞. In particular, if s′ is sharp, then
the above necessity claim is true for ν = ν̃n. The above sufficiency claims are also
true for ν = ν̃n.

Remark 3 The constraint 2j1 = o
(
n

1
d+2σ

)
in Theorem 3 can be relaxed consider-

ably if a lower asymptotic rate for ν → 0 is known (cf. also Remark 2).

Theorem 4 (Asymptotic behaviour of ν̃.) Consider both NR and DE. Let 0 <

s′ < s < r. Assume that the penalized model is via K2 (
√

ν, f ; L2(Rd), Ḃs
22(Rd)

)
,

f ∈ L∞(Rd)
⋂

Bs′
22(Rd) and that j0 ≤ j1, j1 → ∞ and 2j1 = o

(
n

1
d

)
. Assume also

that either j0 = O(1) and f /∈ Vj for any j < j0, or j0 →∞, f /∈ Vj for any j ∈ Z
and the index s′ is completely sharp. Finally, let 0 ≤ σ < 2s, and assume that one
of the three cases (i - iii) of Theorem 1 holds. Then, ν̃ → 0 as n →∞.

Corollary 2 (Consistency in probability of estimation in Bσ
22, σ ≥ 0, via f̃ν? .)

Consider both NR and DE. Assume that σ ≤ s′
2 , 2j1 = o

(
n

1
d+2σ

)
, the conditions of

Theorem 4 are fulfilled, and (??) holds. Then,

Ψσ(ω?) P−→
n→∞

0 (25)

holds. Moreover, if σ < d
2 and (??) is fulfilled, then also

Ψσ(ν?) P−→
n→∞

0 (26)

holds.

1 INTRODUCTION 20

Remark 4 The condition f ∈ L∞(Rd) in all of the above results is essential only
when 0 < s ≤ d

2 , due to the Sobolev embedding within the scale of Besov spaces (see
also [22], Remark ?? and B21).

Remark 5 In the partial case σ = 0 (L2-cross validation), when d = 1, Theorems
1 - 4 and Corollaries 1, 2 yield essential improvements of Theorems 5 - 8 and
Corollary 2 in [?], Theorem 3 in [38], as well as of Theorems 1 - 3 in [20].

1.5 The software

1.5.1

The task is to develop a software system capable of applying the non-thresholding
shrinkage algorithms for the non-parametric regression problem. Data size is always
taken an exact power of 2 in order to use the fast discrete wavelet transform, and
since the methods described above will produce results of practical use only when
combined with thresholding techniques in adaptive estimators. For the wavelet
transform I use gm-waves, and for visualization I use gm-lib combined with qt.
Gm-waves and gm-lib are developed in Narvik University College and can be used
freely for educational purposes. I have written the software completely in C++,
using templates where needed. Number one priority was to make the source code
as reusable as possible. Only the key moments in the source code are commented,
instead I have preferred to write self-explanatory code, increasing its readability
this way.

1.5.2 About gm-waves

Gm-waves is a new software system developed as a wavelet library. It consists of two
parts: a computational library for wavelet algorithms and a visualization library.
Both libraries are written in template-based C++. The visualization library is
OpenGL-based and uses the display hierarchy of gm-lib - a geometric modelling
library developed at Narvik University College. The user interface of gm-waves
relies on QT, a complete C++ application development framework.

The current version of gm-waves features most of the wavelets and algorithms
described in [34], including also the lifting scheme, fast lifted wavelet transforms,
the Daubechies-Lagarias algorithm, wavelet packets and best basis selection algo-
rithms, filter calculation functions, pursuit methods and others. Among the new
features are a new algorithm for N-dimensional discrete wavelet transform (DWT)
using recursive templates in C++, a 2-dimensional discrete wavelet transform for

1 INTRODUCTION 21

processing of large data sets using a Graphics Processing Unit (GPU) shading al-
gorithm etc.

1.6 Generating random numbers

”Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.”

John von Neumann

Performing experiments with noisy data I encountered the problem of generating
noise or random numbers. There are two primary methods for generating random
numbers: computer generated pseudo random numbers, and random numbers gen-
erated by some physical process like radio-active decay or the thermal phenomena.
I shall introduce examples for both methods here. The prefix pseudo is used to em-
phasize on the fact that it’s not a truly random sequence of numbers but a sequence
behaving like one.

1.6.1 Computer generated pseudo random generators

Most of the computer generated pseudo random number generators (PRNGs) pro-
duce an uniformly distributed sequences. Since any PRNG runs on a deterministic
computer, it is necessarily a deterministic algorithm. If the PRNG uses fixed amount
of memory it will produce a periodic sequence. Given a sufficient number of itera-
tions the generator will revisit a previous internal state, after which it will repeat
forever. That is why the output of such generator will always have one property
that a true random sequence can never have: guaranteed periodicity. The primary
PRNGs classes are: linear congruential generators, lagged Fibonacci generators,
linear feedback shift registers and generalized feedback shift registers.

Linear congruential generators

Linear congruential generators represent one of the oldest and best studied
PRNGs. However their properties are far from ideal. Let Ri is the ith random
number. Then the sequence {Ri}∞0 is generated by the following formula:

Ri+1 = (A×Ri + B)modM

It is known that these random generators have a period at most M . It is also
known that for good choice of A and B the linear congruential generator will have
a period M if M = 2n, the period will be M − 1 if M is prime and so on.

1 INTRODUCTION 22

While the linear congruential generators are capable of producing decent pseudo
random numbers in theory, in practice they are extremely sensitive to the choice of
A, B and M . In ”Numeric recipes in C” William Press, Saul Teukolsky, William
Vetterling and Brian Flannery present a linear congruential generator with

A = 1664525, B = 1013904223,M = 232

although the authors say: ”These are not particularly good choices for A and B,
though they are not gross embarrassments by themselves.”.

Linear congruential generators should never be used for cryptography purposes
because of the well known cryptanalysis techniques. They should be used with
caution in Monte Claro algorithms since the period of the generator may be lesser
then the data size needed.

Lagged Fibonacci generator

A Lagged Fibonacci generator is another example of a pseudo random number
generator. This class of random number generator is designed as an improvement on
the ”standard” linear congruential generator. These are based on a generalization of
the Fibonacci sequence (Fn+2 = Fn+1 +Fn). The sequence of the Lagged Fibonacci
is generated by the following formula:

Ri = (Ri−j ? Ri−k)modM

where 0 < j < k

M is usually a power of 2 M = 2n, often 232 or 264. The ? operator denotes
some binary operation. This may be either addition, subtraction, multiplication,
or the bitwise arithmetic exclusive-or operator (XOR). The theory of this type of
generator is rather complex, and it may not be sufficient simply to choose random
values for j and k. These generators also tend to be very sensitive to initialization.
Generators of this type store the last k values.

If the ? operation is addition, then the generator is described as an Additive
Lagged Fibonacci Generator, if it is multiplication, the generator is called a Mul-
tiplicative Lagged Fibonacci Generator, and if it is XOR, the generator is called a
Two-tap Generalized Feedback Shift Register. The Mersenne twister algorithm is
a variation on a Two-tap Generalized Feedback Shift Register.

Lagged Fibonacci generators have a maximum period of (2k − 1)m
2 if the ?

operation is addition or subtraction, and (2k − 1) the ? operation is XOR. Popular
pairs of j and k are: j = 7, k = 10, j = 5, k = 17, j = 24, k = 55, j = 65, k = 71,
j = 128, k = 159. A large list of possible values for j and k is listed in Donald
Knuth’s volume 2 of ”The Art of Computer Programming”.

1 INTRODUCTION 23

Linear feedback shift register

A linear feedback shift register is a shift register whose input bit is a linear func-
tion of its current state. Since the only linear functions of single bits are exclusive-or
(XOR) and inverse exclusive-or (inverse-XOR), the input bit is calculated by the
XOR of some bits of the overall shift register value. A linear feedback shift register
with a well-chosen feedback function can produce a sequence of bits which appears
random and which has a very long period.

Linear feedback shift register works in the following way. It keeps n bits stored.
At each step a XOR over several of the stored bit and the result is the feedback
which is inserted in the beginning of the stored bit sequence. The last bit of the
sequence is removed and used for an output.

Linear feedback shift register have long been used as a pseudo-random number
generator for use in stream ciphers (especially in military cryptography), due to
the ease of construction from simple electromechanical or electronic circuits, long
periods, and very uniformly distributed outputs. However their output is completely
linear, leading to fairly easy cryptanalysis.

Blum-Blum-Shub pseudo random number generator Blum Blum Shub
is a pseudo random number generator proposed in 1986 by Lenore Blum, Manuel
Blum and Michael Shub. The output sequence is produced by the function:

Ri+1 = R2
i modM

where M = p × q is the product of two large primes p and q. At each step of
the algorithm, some output is derived from Ri. The output is commonly either the
bit parity of Ri or one or more of the least significant bits of Ri.

The generator is not appropriate for use in simulations, only for cryptography,
because it is not very fast. However, it has an unusually strong security proof,
which relates the quality of the generator to the computational difficulty of integer
factorization. If integer factorization is difficult (as is suspected) then Blum-Blum-
Shub generator with large M will have an output free from any nonrandom patterns
that can be discovered with any reasonable amount of calculation. This makes it
as secure as other encryption technologies tied to the factorization problem, such
as RSA encryption.

Mersenne twister

The Mersenne twister is a pseudo random number generator developed in 1997
by Makoto Matsumoto and Takuji Nishimura. It provides for fast generation of
very high quality pseudo random numbers, having been designed specifically to

1 INTRODUCTION 24

Figure 3: Linear Feedback Shift Register

1 INTRODUCTION 25

rectify many of the flaws found in older algorithms. The newer and more commonly
used algorithm is the Mersenne Twister MT 19937. MT 19937 has the following
properties: a colossal period of 219937 − 1, faster than all but the most statistically
unsound generators and passes numerous tests for statistical randomness, including
the stringent Diehard tests. This period explains the origin of the name: it is a
Mersenne prime, and some of the guarantees of the algorithm depend on internal
use of Mersenne primes. In practice, there is little reason to use larger ones.

The algorithm itself is a twisted generalised feedback shift register. The ”twist”
is a transformation which assures equidistribution of the generated numbers in 623
dimensions. Unlike Blum Blum Shub, the algorithm in its native form is not suitable
for cryptography. Observing a sufficient number of iterates allows one to predict
all future iterates. Combining the Mersenne twister with a hash cures this problem
but slows down generation. For many other applications, however, the Mersenne
twister is fast becoming the random number generator of choice.

1.6.2 Hardware random generators

A hardware random number generator is an apparatus that generates random num-
bers from a physical process. Because the outcome of quantum-mechanical events
cannot in principle be predicted, they are the gold standard for randomness. Some
quantum phenomena used for random number generation include:

• A nuclear decay radiation source, detected by a Geiger counter attached to a
PC.

• Photons traveling through a semi-transparent mirror. The mutually exclusive
events (reflection - transmission) are detected and associated to ”0” - ”1” bit
values.

Another source of randomness is the thermal phenomena. Thermal phenomena
are easier to detect but they can be open to attack by lowering the temperature of
the system, though most systems will stop operating at temperatures (150 K) low
enough to reduce noise by a factor of two. Some thermal phenomena used include:

• Thermal noise from a resistor, amplified to provide a random voltage source.

• Avalanche noise generated from an avalanche diode or Zener breakdown noise
from a reverse-biased zener diode.

• Atmospheric noise, detected by a radio receiver attached to a PC.

1 INTRODUCTION 26

”Move the mouse to produce randomness”

In the absence of quantum or thermal noise, other phenomena that tend to be
random can be used. With several such sources, combined carefully, enough entropy
can be collected for the occasional creation of cryptographic keys. The advantage
is that this needs no special hardware. The primary source of randomness used
here is the precise timing of the interrupts caused by mechanical input/output
devices, such as keyboards and disk drives, which explains the quote above. This
last approach must be implemented carefully and may be subject to attack if it is
not. For instance, the generator built into the Linux kernel may be vulnerable.

1.6.3 PRNG implementations

Random numbers in C

The ANSI C present a built in linear congruential generator which should be
used with caution. In the header <stdlib.h> the following macros and function
are defined:

#define RAND_MAX 0x7fff

int __cdecl rand(void);

void __cdecl srand(unsigned int _Seed);

In case a float pseudo random number in [0, 1] is needed, it can be get by an
expression like:

x = rand() / (RAND_MAX + 1.0);

In case an integer pseudo random number in [1..max] is needed, it should be get
by the expression:

x = 1 + (int) ((rand() * max) / (RAND_MAX + 1.0));

rather than the most commonly used:
x = 1 + rand() % (max + 1);

which relies on low order bits and should never be used. Similarly the user should
never split a number returned by rand() for to different porpoises, two different
numbers should be used instead.

The main problem is the short period of the presented generator. For example if
this generator is used in a Monte-Carlo algorithm and a set if 1000000000 points are
examined, what actually happens is examination of the same 32767 points about
30000 times. However if the ANSI C PRNG is the choice it should be seeded with
execution dependent variable in order to get different sequence in each execution,
for example:

srand((unsigned int) time(0));

1 INTRODUCTION 27

which initializes the PRNG with a time dependent value.
Random numbers in C++

C++ inherits the ANSI C PRNG and it is the only standard compiler and
platform independent generator that can be used. However there are a couple of
compiler and/or platform dependent PRNG is available.

Random numbers in GNU C++

The GNU C++ Library defines a couple of PRNGs. The two classes RNG and
Random are used together to generate a variety of random number distributions.
A distinction must be made between random number generators, implemented by
class RNG, and random number distributions. A random number generator pro-
duces a series of randomly ordered bits. These bits can be used directly, or cast
to other representations, such as a floating point value. A random number genera-
tor should produce a uniform distribution. A random number distribution, on the
other hand, uses the randomly generated bits of a generator to produce numbers
from a distribution with specific properties. Each instance of Random uses an in-
stance of class RNG to provide the raw, uniform distribution used to produce the
specific distribution. Several instances of Random classes can share the same in-
stance of RNG, or each instance can use its own copy. For more information see
the User’s Guide to the GNU C++ Library

Random numbers in Unix/Linux

There is a standard function random() in unix/linux distributions, more in-
formation available in manual pages (RANDOM(3)). The function is defined in
<stdlib.h>

long int random(void);

The random() function uses a non-linear additive feedback random number gen-
erator employing a default table of size 31 long integers to return successive pseudo-
random numbers in the range from 0 to RAND MAX. The period of this random
number generator is very large, approximately 16×(231−1) and is the better choice
of Unix/Linux users.

GNU Scientific Library

The GNU Scientific Library is a free software available for download under GNU
Public License. The library provides a large collection of random number generators
which can be accessed through a uniform interface. Environment variables allow
you to select different generators and seeds at runtime, so that you can easily switch
between generators without needing to recompile your program. Each instance of a
generator keeps track of its own state, allowing the generators to be used in multi-
threaded programs. Additional functions are available for transforming uniform

1 INTRODUCTION 28

random numbers into samples from continuous or discrete probability distributions
such as the Gaussian, log-normal or Poisson distributions. For more information:
The official GNU Scientific Library page.

Random numbers in Java

Java provides a toolkit for generating random numbers, in the class java.util.Random.
An instance of this class is used to generate a stream of pseudo random num-
bers. The class uses a 48-bit seed, which is modified using a linear congruential
formula. The algorithms implemented by class Random use a protected utility
method that on each invocation can supply up to 32 pseudorandomly generated
bits. Many applications will find the random method in class Math simpler to use.
The java.lang.Math class provides a:

public static double random()

method that returns a double value in [0.0, 1.0). Returned values are chosen
pseudo randomly with uniform distribution from that range. For more information
see Javadoc.

Random numbers in .NET platform

The .NET platform provides methods for generating pseudo random numbers
in the System.Random class. The current implementation of the Random class is
based on Donald E. Knuth’s subtractive random number generator algorithm. To
generate a cryptographically secure random number a class that is derived from
System.Security.Cryptography.RandomNumberGenerator should be used such
as System.Security.Cryptography.RNGCryptoServiceProvider. For more in-
formation see MSDN.

1.6.4 Generating i.i.d. random variables

Let εi are independent identically distributed random variables in [a, b]. Our task
is to determine a and b so as

Eεi = e

E(εi − Eεi)2 = δ2

where e and δ2 are given constants.
We will generate random variables with Eεi = 0, if we want to achieve Eεi =

e 6= 0 then we will use the sequence {εi + e} which will consist of random numbers
in [a + e, b + e], where [a, b] is the domain for εi.

1 INTRODUCTION 29

If εi are identically distributed random variables in [a, b] then

Eεi =
a + b

2
= 0 ⇒ a = −b

First we will determine δ2 with given [a, b]

δ2 = E(εi − Eεi)2 = Eε2
i = x2p(x)

where x is a point in [a, b]. So in order to compute δ2 we have to compute the
mean value of the function f(x) = x2 in [a, b] = [−b, b]

δ2 =

∫ b

a
x2dx

b− a
=

2
∫ b

0
x2dx

b− (−b)
=

∫ b

0
x2dx

b
=

x3|b0
3b

=
b3 − 03

3b
=

b2

3

δ2 =
b2

3
⇒ b =

√
3δ2

In conclusion, in order to produce identically distributed random variables with
given variance δ2, the interval

[−
√

3δ2,
√

3δ2]

should be used. To produce identically distributed random variables with given
variance δ2 and expectation e, the interval

[−
√

3δ2 + e,
√

3δ2 + e]

should be used.

1.6.5 The rejection method.

We will present a powerful technique for generating random variables with a given
distribution. The method rely on an simple geometric fact. Given the graph of
the probability distribution (p(x)) the area below the graph in any range [a, b] for
x corresponds to the probability of generation x in that range. For the algorithm
we choose another function f(x), so that: 0 ≤ p(x) ≤ f(x), and

∫∞
−∞ f(x)dx < ∞.

The later is possible because
∫∞
−∞ p(x)dx = 1. f(x) is called comparison function.

The rejection method is the following:

Choose an uniformly distributed point (X,Y), so as 0 ≤ Y ≤ f(x).

If Y is above p(x) (Y > p(x)), reject the point.

1 INTRODUCTION 30

Else accept the point and output X as a result.
It is obvious that the accepted points are uniform in the accepted area, so that

their X values have the desired distribution. Another obvious fact is that the
fraction of rejected points is exactly:

∫∞
−∞ p(x)dx∫∞
−∞ f(x)dx

This method rises the problem of choosing an uniformly distributed point below
f(x). One possible solution is the transformation method that can be found in
William Press, Saul Teukolsky, William Vetterling and Brian Flannery’s ”Numeric
Recipes in C”.

Another simple and worse performing solution is to choose:

f(x) = max
x∈[a,b]

p1(x), x ∈ [a, b]

f(x) = 0, x 6∈ [a, b]

where p1(x) is the normalized p(x), so as:

∫ b

a

p1(x)dx = 1

[a, b] should be determined so as p(x) < ε, x 6∈ [a, b], where ε > 0 is a insignificant
probability for the current experiment. Determining an uniformly distributed point
(X, Y) is simply determining uniformly distributed X ∈ [a, b] and determining
uniformly distributed Y ∈ [0,maxx∈[a,b] p1(x)].

2 MAIN RESULTS 31

2 Main results

2.1 Decomposing the risk into approximation and variance

term

2.1.1 1-dimensional case

Let f(x) : [0, 1] → R ∈ C0, εi i = 1..n are independent identically distributed
i.i.d. random variables. Eεi = 0 and Eε2

i = δ2. Let g(x) : R→ R known Riemman
integrable.

Let xi are deterministic knots (xi = 1
2N + (i − 1) 1

N) and X̂i are independent,
uniformly distributed on [0, 1] random variables. I will discuss both cases (1) and
(2) together and stress on the differences. Xi is either xi or X̂i.

Let Ŷi = f(Xi) + εi.

F =
∫ 1

0

f(x)g(x)dx, F̂n =
1
n

n∑
1

Ŷig(Xi) (27)

Risk = E(F − F̂n)2 = E((F − EF̂n) + (EF̂n − F̂n))2 =

E(F − EF̂n)2 + 2E((F − EF̂n)(F̂n − F̂n) + E(F̂n − F̂n)2 =

(F − EF̂n)2 + 2((F − EF̂n)E(EF̂n − F̂n) + E(EF̂n − F̂n)2 =

(F − EF̂n)2 + 2((F − EF̂n)(EF̂n − EF̂n) + E(EF̂n − F̂n)2 =

(F − EF̂n)2 + E(EF̂n − F̂n)2

(F − EF̂n)2 - approximation term.
E(EF̂n − F̂n)2 - variance term.

EF̂n = E
1
n

n∑
1

Ŷig(Xi) =

E
1
n

n∑
1

(f(Xi) + εi)g(Xi) =

1
n

n∑
1

Ef(Xi)g(Xi) +
1
n

n∑
1

Eεig(Xi) =

2 MAIN RESULTS 32

1
n

n∑
1

Ef(Xi)g(Xi)

EF̂n = E
1
n

n∑
1

f(Xi)g(Xi) (28)

if Xi = X̂i then EF̂n = F , since the expectation of the quadrature form above
is exactly the value of the integral when the nodes are i.i.d random variables. From
this fact follows that the approximation term is 0 in case of i.i.d nodes.

In the case of deterministic nodes (xi = 1
2N + (i− 1) 1

N) from (28) follows:

approximation term = (F − EF̂n)2 =
(∫ 1

0

f(x)g(x)dx− E
1
n

n∑
1

f(Xi)g(Xi)

)2

=

n∑
1

(∫ Xi+
1
2n

Xi− 1
2n

f(x)g(x)dx− f(Xi)g(Xi)dx

)2

=

n∑
1

∣∣∣∣∣
∫ Xi+

1
2n

Xi− 1
2n

f(x)g(x)dx− f(Xi)g(Xi)dx

∣∣∣∣∣

2

≤

n∑
1

(∫ Xi+
1
2n

Xi− 1
2n

|f(x)g(x)dx− f(Xi)g(Xi)| dx

)2

≤ const

nβ

approximation term ≤ const

nβ
(29)

assuming |g(xi)2 − g(x)2| ≤ const|x− xi|α

variance term = E(EF̂n − F̂n)2 =

E(
1
n

n∑
1

f(Xi)g(Xi) +
1
n

n∑
1

(f(Xi) + εi)g(Xi))2 =

1
n2

E(
n∑
1

εig(Xi))2 =
1
n2

E

n∑
1

(εig(Xi))2 =

1
n2

n∑
1

Eε2
i g(Xi)2 =

δ2

n

1
n

n∑
1

g(Xi)2 =

for sufficiently large n:

variance term ³ δ2

n
||g||2L2

(30)

2 MAIN RESULTS 33

from (29) and (30) follows that in case of deterministic nodes:

risk ³ const

nβ
+

δ2

n
||g||2L2

(31)

2.1.2 1-dimensional case using wavelets

Using the assumptions in 2.1.1. Let ϕ be an univariate scaling function (father
wavelet), and let ψ be the corresponding univariate wavelet (mother wavelet), ob-
tained by multiresolution analysis (see, e.g., [16], [15]), so that for any j0 ∈ Z
the functions ϕj0k1(x1) = 2

j0
2 ϕ(2j0x1 − k1), ψjk1(x1) = 2

j
2 ψ(2jx1 − k1), x1 ∈ R,

j = j0, j0 + 1, · · · , k1 ∈ Z, form an orthonormal basis of L2(R)
Let ∫ ∞

−∞
ϕj0k(x)dx = 1,

∫ ∞

−∞
ϕj0k(x)2dx = 1,

∫ ∞

−∞
ψjk(x)dx = 0 and

∫ ∞

−∞
ψjk(x)2dx = 1

The decomposition of f is:

f(x) =
∞∑

k=−∞
αj0kϕj0k(x) +

j1∑

j=j0

∞∑

k=−∞
βjkψjk(x) (32)

ant the approximation is:

ˆfn(x) =
∞∑

k=−∞
ˆαj0kϕj0k(x) +

∞∑

j=j0

∞∑

k=−∞
β̂jkψjk(x) (33)

risk = E

∫ 1

0

(f(x)− ˆfn(x))2dx =

E




∞∑

k=−∞
(αj0k − ˆαj0k)2 +

j1∑

j=j0

∞∑

k=−∞
(βjk − β̂jk)2 +

∞∑

j=j1

∞∑

k=−∞
β2

jk


 =

∞∑

k=−∞
E(αj0k − ˆαj0k)2 +

j1∑

j=j0

∞∑

k=−∞
E(βjk − β̂jk)2 +

∞∑

j=j1

∞∑

k=−∞
β2

jk

risk =
∞∑

k=−∞
E(αj0k − ˆαj0k)2 +

j1∑

j=j0

∞∑

k=−∞
E(βjk − β̂jk)2 +

∞∑

j=j1

∞∑

k=−∞
β2

jk (34)

considering 2.1.1, let g(x) = ϕj0K

< f(x), g(x) >=
∫ ∞

−∞
f(x)g(x)dx =

2 MAIN RESULTS 34

∞∑

k=−∞
αj0k

∫ ∞

−∞
ϕj0kϕj0Kdx +

∞∑

j=j0

∞∑

k=−∞
βjk

∫ ∞

−∞
ψjkϕj0Kdx = αj0K

and

< ˆf(x), g(x) >=
∫ ∞

−∞
ˆf(x)g(x)dx =

∞∑

k=−∞
ˆαj0k

∫ ∞

−∞
ϕj0kϕj0Kdx +

∞∑

j=j0

∞∑

k=−∞
β̂jk

∫ ∞

−∞
ψjkϕj0Kdx = ˆαj0K

from (31) follows:

E(< f(x), g(x) > − < ˆf(x), g(x) >)2 = (αj0K − ˆαj0K)2 ≤ const

nσ
j0K

+
δ2

n
(35)

again considering 2.1.1, let g(x) = ψJK

< f(x), g(x) >=
∫ ∞

−∞
f(x)g(x)dx =

∞∑

k=−∞
αj0k

∫ ∞

−∞
ϕj0kψJKdx +

∞∑

j=j0

∞∑

k=−∞
βjk

∫ ∞

−∞
ψjkψJKdx = βJK

and

< ˆf(x), g(x) >=
∫ ∞

−∞
ˆf(x)g(x)dx =

∞∑

k=−∞
ˆαj0k

∫ ∞

−∞
ϕj0kψjKdx +

∞∑

j=j0

∞∑

k=−∞
β̂jkψjk

∫ ∞

−∞
ψJKdx = ˆβJK

from (31) follows:

E(< f(x), g(x) > − < ˆf(x), g(x) >)2 = (βJK − ˆβJK)2 ≤ const

nσ
JK

+
δ2

n
(36)

from (34)-(36) follows:

risk =
∞∑

k=−∞
E(

const

nσ
j0k

+
δ2

n
)2 +

j1∑

j=j0

∞∑

k=−∞
(
const

nσ
jk

+
δ2

n
) +

∞∑

j=j1

∞∑

k=−∞
β2

jk (37)

The parameters j0 and j1 are selected here as in [24], j0 must be such thatN1/(2s+d ≤
2j0 < 2N (1/(2s+d)) and j1 must be such: 2dj1 = o(N) (we choose 2dj1 ∼ 2N/ln N

as in [24]). There are other ways for determining j0 and j1 for example cross vali-
dation which we will not discuss here.

2 MAIN RESULTS 35

2.2 Minimizing the risk (levelwise)

Let us consider the model for non-thresholding shrinkage from [22], on page 314 for
deterministic nodes (1), v is the regularization parameter (vge0):

E(β̃jk − βjk)2 =

1
(1 + v22js)2

[
(β̄jk − βjk)2 +

δ2

n

1
n

∑

i=1

nψjk(Xi)2 − 2v22jsβjk(β̄jk − βjk) + v224jsβ2
jk

]

(38)
where β̄jk are the values of the wavelet coefficients of f approximated by a

quadrature form. The wavelet coefficients of the estimator are shrunk using the
following formulae:

β̃jk =
β̂jk

1 + 22jsv
(39)

If we consider (38) levelwise we have:

∑

k

E(β̃jk − βjk)2 =

∑

k

1
(1 + vj22js)2

[
(β̄jk − βjk)2 +

δ2

n

1
n

n∑

i=1

ψjk(Xi)2 − 2vj22jsβjk(β̄jk − βjk) + v2
j 24jsβ2

jk

]

(40)
Now we will calculate the exact values for vj in order to minimize

∑∞
k=−∞E(β̃jk−

βjk)2.
Lets

22js = aj

∞∑

k=−∞
(β̄jk − βjk)2 = D2

j

δ2

n

1
n

∞∑

k=−∞

n∑

i=1

ψjk(Xi)2 = ∆2
j

∞∑

k=−∞
βjk(β̄jk − βjk) = Cj

∞∑

k=−∞
β2

jk = B2
j

2 MAIN RESULTS 36

Lets consider
∑∞

k=−∞E(β̃jk − βjk)2 as a function of v:

Fj(v) =
∞∑

k=−∞
E(β̃jk − βjk)2 =

1
(1 + ajv)2

(D2
j + ∆2

j − 2ajvCj + a2
jv

2B2
j) (41)

In order to compute the minimum of Fj(v) we have to solve the following equa-
tion:

Fj(v)′ = 0

[
1

(1 + ajv)2
(D2

j + ∆2
j − 2ajvCj + a2

jv
2B2

j)
]′

= 0

1
(1 + ajv)4

[(−2ajCj+2a2
jvB2

j)(1+ajv)2−2aj(1+ajv)(D2
j +∆2

j−2ajvCj+a2
jv

2B2
j)]′ = 0

1
(1 + ajv)4

[(−2ajCj+2a2
jvB2

j)(1+ajv)2−2aj(1+ajv)(D2
j +∆2

j−2ajvCj+a2
jv

2B2
j)] = 0

2aj

(1 + ajv)3
[(−Cj + ajvB2

j)(1 + ajv)−D2
j −∆2

j + 2ajvCj + a2
jv

2B2
j)] = 0

2aj

(1 + ajv)3
[−Cj + ajvB2

j − ajvCj + a2
jv

2B2
j −D2

j −∆2
j + 2ajvCj − a2

jv
2B2

j)] = 0

2aj

(1 + ajv)3
[−Cj + ajvB2

j −D2
j −∆2

j + ajvCj] = 0

2aj

(1 + ajv)3
[ajv(B2

j + Cj)− (Cj + D2
j + ∆2

j)] = 0

Since aj > 0 and v ≥ 0 ⇒ 2aj

(1+ajv)3 > 0 ⇒

2aj

(1 + ajv)3
[ajv(B2

j +Cj)−(Cj +D2
j +∆2

j)] = 0 iff v =
(Cj + D2

j + ∆2
j)

aj(B2
j + Cj)

= v∗ ⇒

Fj(v) has only one extremum and since Fj(v∗)′′ > 0 Fj(v) has a minimum in
v∗, except ±∞, and since v∗ may be negative ⇒

vj = max(0,
(Cj + D2

j + ∆2
j)

aj(B2
j + Cj)

) (42)

2 MAIN RESULTS 37

vj = 0 means that wavelet coefficients on level j should not be shrunk, a positive
value of vj means that corresponding wavelet coefficients are going to be shrunk.
After implementing this model, we found out that the results are worse than ex-
pected for relatively smooth function (having few singularity points). The problem
is that we rely on the fact that noise is usually situated on finer levels and we try
to shrink them more with the parameter aj but from (39) and (42) ⇒

β̃jk =
β̂jk

1 + 22jsv
=

β̂jk

1 +
Cj+D2

j +∆2
j

B2
j +Cj

which does not take into account neither the level index j, nor the smoothness
index s of the Besov space Bs

pq. We achieve better smoothing if we choose of j0 and
j1 as in previous section.

Let us consider the above model for i.i.d random nodes. The difference from the
above is that the expectation of the inner product integral f approximation by a
quadrature form is exact: Eβ̄jk = βjk, there for,

D2
j =

∞∑

k=−∞
(β̄jk − βjk)2 = 0

Cj =
∞∑

k=−∞
βjk(β̄jk − βjk) = 0

So the minimum of Fj(v) will be at:

v∗ =
∆2

j

ajB2
j

which is always non negative ⇒

vj =
∆2

j

ajB2
j

(43)

in the case of i.i.d. nodes.
One possible way for evaluating βjk and β̄jk is cross validation. For details see

appendix ([23]).

2.3 Minimizing the risk (same regularization parameter for

all leves)

Now the task is to compute a single regularization parameter for all wavelet levels.
Since it is very difficult task to compute analytically the value of the regularization

2 MAIN RESULTS 38

parameter for which the risk is minimal we will approach this task in a computa-
tional way. Most of the cases the risk has only one extremum, which is minimum,
so a simple way for computing it is to start from a positive value x and search in
the interval [0, 2x]. At each step if the search interval is a, b] we check the values of
the risk in a, a+b

2 and b, if risk(a) > risk(a+b
2) > risk(b) then we change the search

interval to [a+b
2 , 2b]. If risk(a) < risk(a+b

2) < risk(b) then we change the search
interval to [a, a+b

2]. In the last case risk(a) > risk(a+b
2) < risk(b) we have several

subcases: if risk(a) > risk(a+b
4) > risk(a+b

2) < risk(3(a+b)
4) < risk(b) then we

change the search interval to [a+b
4 , 3(a+b)

4], if risk(a) > risk(a+b
4) > risk(a+b

2) >

risk(3(a+b)
4) < risk(b) then we change the search interval to [a+b

2 , b] and finally
if risk(a) > risk(a+b

4) < risk(a+b
2) < risk(3(a+b)

4) < risk(b) then we change the
search interval to [a, a+b

2]. Note that only one step extends the search interval and
it can be performed only finite number of times since the function has only one
minimum in finite point. Moreover it can be shown that this minimum tends to 0
when the sample size N →∞.

Since regularization parameters have values less than 2 in almost all the cases,
another solution is to choose some set of points in [0, 2] and use a genetic algorithm
for searching the minimal value of the risk, which will find the minimum (or a value
very close to the minimum) for relatively small number of iterations.

2.4 Equalizing ||f̃ ||Bs
pq

to ||f ||Bs
pq

The idea of this method is to equalize the norms of the exact function and the
estimator in Besov space Bs

pq. For this method we need to have some knowledge
for the Besov norm of the exact function. Both homogeneous and inhomogeneous
norm can be used. For homogeneous Besov norm (6) we have:

||f || •
B s

pq(Rd)
=





∞∑

j=−∞


2j[s+n(1

2− 1
p)]

(∑

k∈Zn

2n−1∑

l=1

|β[l]
jk|p

) 1
p




q




1
q

.

In this case it can be shown that the dependence in the regularization parameter
is monotone, which means that we can use again the technique described in the
previous sections.

If we equalize the norms levelwize we don’t achieve improvement because again
the smoothing index of the Besov space is not taken into consideration.

2 MAIN RESULTS 39

2.5 Cross validation

For proofs of all theorems in 1.4 see [23].

3 THE SOFTWARE 40

3 The Software

”There are two ways of constructing a software design. One way is to make it so
simple that there are obviously no deficiencies. And the other way is to make it so

complicated that there are no obvious deficiencies.”

The idea of the software system is to demonstrate the models discussed above.
All the software developed by me lies in mainwindow.ui.h and Random.h. During
the development process I fixed some performance issues in gm lib and reported
them to the gm lib team.

During the development process I emphasized on producing decent output rather
than ease of use. The output can be exported in vector formats such as pdf, encap-
sulated postscript (eps) and post script. Output formats with loss such as jpeg or
gif were avoided on purpose.

The software design follows standard qt practice, and although it’s a little less
object oriented than a common graphical user interface application, in my opinion
it’s designed very well. I tried to make the source code as scalable as possible.

3.1 User Interface

Figure 4: The Wavelet demo application

On figure (3.1) is shown the standard window of the application I developed.
There are 4 separate windows containing:

3 THE SOFTWARE 41

• The exact function for the experiment on the top left.

• The noisy function (the exact function with added white noise) for the exper-
iment on the top right.

• The estimated function after the experiment on the bottom left.

• The the error (the difference between exact and estimated functions) on the
bottom right.

The application can print any of the windows into some vector graphics for-
mat from file > print menu. Some predefined function are build in as well
as the possibility to load any data from a file. The file for 1d data starts with
data_size_1d, followed by long_data_size_1d, and then by minimum and max-
imum value of the argument of the function. Next in the file there should be
long_data_size_1d numbers representing the function values in each point (deter-
ministic nodes are considered). All numbers should be separated by at least one
white space. Analogously for 2d data the file starts with data_size_1d followed by
long_data_size_2d and minimum and maximum values for both function parame-
ters. Next in the file there should be long_data_size_2d x long_data_size_2d

numbers representing the function values in each point (deterministic nodes are
considered). All numbers should be separated by at least one white space. Only
data_size_1d (or data_size_2d x data_size_2d are considered for approximat-
ing the function, long data sizes are used for computing an approximation of func-
tions exact coefficients.

3.2 Mathematical model

The models discussed in the previous section are implemented in Analyse1D() and
Analyse2D() function in mainform class. There is an enumeration ExperimentType

defining which of the models will be used. Its possible values are:

• Experiment_V - computing one regularization parameter for all wavelet lev-
els. The exact coefficients of the function (βjk) are computed like the ap-
proximate coefficients (¯βjk) using DWT by using the long_data_size_1d or
long_data_size_2d points respectively.

• Experiment_V_j - same as above but computing separate regularization pa-
rameter for each wavelet level.

3 THE SOFTWARE 42

• Experiment_Norm - computing one regularization parameter for all wavelet
levels so as Bs

pq norm of the approximated function is equal to the Bs
pq norm

of the exact function. One and the same data size is used for computing both
norms.

• Experiment_Norm_j - same as above but computing separate regularization
parameter for each wavelet level.

For all computations I use Daubechies wavelets of degree 6.0 or 7.0. Most of
the experiments were preformed for the λ-tear function since it’s known exactly in
which Besov spaces it belongs to [22] and it is a very well studied function so I can
compare my results with other researches.

3.3 mainwindow.ui.h

The file is used for declaring the functions that process user input via keyboard/mouse.
The main functionality of this project is in the following functions:

void init()

Initialize all the variables used in the program.
effects: All internal variables are properly set.
returns: void

void SetupCamera(int dimension, double x_min, double x_max, double y_min,

double y_max, double z_min, double z_max, bool use_curve)

This function is used to set up the camera in each window. Camera is pointed
at the center of the curve/surface. If the data is one dimensional the camera is
positioned right above the center of the embracing rectangle. If the data is two
dimensional the camera is positioned so as

argument: int dimension - dimension of the analyzed object.
argument: double x_min - minimal x value of the analyzed object.
argument: double x_max - maximum x value of the analyzed object.
argument: double y_min - minimal y value of the analyzed object.
argument: double y_max - maximum y value of the analyzed object.
argument: double z_min - minimal z value of the analyzed object.
argument: double z_max - maximum z value of the analyzed object.

3 THE SOFTWARE 43

argument: bool use_curve - defines whether to turn the camera towards the
curve or the surface in each window.

requires: 1 ≤ dimension ≤ 2

requires: x_min ≤ x_max

requires: y_min ≤ y_max

requires: z_min ≤ z_max

returns: void

void Clear()

The function clears all the objects inserted in the scenes.
effects: mycurve[i] = NULL for i = 0..number_of_windows.
effects: mysurf[i] = NULL for i = 0..number_of_windows.
returns: void

void LoadSignal1D(func1d func, double t_min, double t_max)

Loads and displays one dimensional data for analysis. Display the result of the
analysis.

argument: func1d func - pointer to a function to be analyzed. func1d is
defined as: long double (*func1d)(long double)

argument: double t_min - minimal value of function parameter.
argument: double t_max - maximal value of function parameter.
effects: Data is loaded in data_1d, long_data_1d and noisy_data_1d.
returns: void

void Analyse1D()

Analyzes one dimensional data.
requires: Data is loaded in data_1d, long_data_1d and noisy_data_1d. The

result of the analysis is in reconstructed_data_1d.
effects: The result of the analysis is in reconstructed_data_1d.

void LoadSignal2D(func2d func, double u_min, double u_max, double v_min, double v_max)

Loads and displays two dimensional data for analysis. Display the result of the
analysis.

argument: func2d func - pointer to a function to be analyzed. func1d\end

is defined as: long double (*func2d)(long double, long double)

argument: double u_min - minimal value of function first parameter.

3 THE SOFTWARE 44

argument: double u_max - maximal value of function first parameter.
argument: double v_min - minimal value of function second parameter.
argument: double v_max - maximal value of function second parameter.
effects: Data is loaded in data_2d, long_data_2d and noisy_data_2d.
returns: void

void Analyse2D(bool update_points = true)

Analyzes two dimensional data.
requires: Data is loaded in data_2d, long_data_2d and noisy_data_2d. The

result of the analysis is in reconstructed_data_2d.
effects: The result of the analysis is in reconstructed_data_2d.

void LoadImage(std::string filename)

Loads and displays image for analysis. Display the images returned by the
analysis.

argument: std::string filename - filename to be loaded.
requires: filename exists.
effects: The image is loaded in }image[i] for i = 0..number_of_windows.
returns: void

void AnalyzeImage()

Analyzes an image loaded in image[0]. The function is called by LoadImage.
requires: image[i].width = image[0].width and image[i].height = image[0].height

for i = 0..number_of_windows

requires: image[i].width = image[0].height = 2^{n} for some n

effects: image[1] contains the noisy image.
effects: image[2] contains the denoised image.
effects: image[3] contains the difference between image[0] and image[2].
returns: void

void Redraw()

Forces redraw of all the windows.
returns: void

void ResizeToFullscreen()

Resizes the current window to full screen or restores normal state if the window
is already in full screen. The function is activated by double click.

returns: void

3 THE SOFTWARE 45

3.4 Random.h

class Random

The class defines a Linear congruential psudo-random number generator. The
values for A, B and M are taken from ”Numeric recipes in C” by William Press,
Saul Teukolsky, William Vetterling and Brian Flannery. This method is chosen
because of its quickness, simplicity and long enough period, the later is the main
reason I don’t rely on the random generator build in C. Since the class is derived
from the abstract class AbstractRandomGenerator, it’s very easy to define other
random generators and use them if needed. The Random\end class has the following
public methods:

Random(const long double& variance = 0.0, const long double& expectation = 0.0);

A default constructor creating an generator that has certain variance and ex-
pectation. The minimum and maximum are calculated as in [...]. The constructor
seeds the random generator with a execution dependent variable. If a generator pro-
ducing one and the same sequence is needed, it should be seeded with a reasonable
value after creation.

argument: const long double& variance variance of the generated random
numbers. Default value is 0.0.

argument: const long double& expectation expectation of the generated
random numbers. Default value is 0.0.

effects: The variance and expectation are set to the given values and minimum
and maximum values of the interval in which the random numbers will be generated
are computed.

Random(const long double& minimum, const long double& maximum, int dummy)

A constructor creating an generator that has certain minimum and maximum.
The variance and expectation are calculated as in [...]. The constructor seeds the
random generator with a execution dependent variable. If a generator producing
one and the same sequence is needed, it should be seeded with a reasonable value
after creation.

argument: const long double& minimum left boundary of the interval in
which the random numbers will be generated.

argument: const long double& maximum right boundary of the interval in
which the random numbers will be generated.

3 THE SOFTWARE 46

argument: int dummy no effect argument. It is necessary to have a dummy
value for distinguishing this constructor from the default one, which can also take
2 const long double& arguments.

requires: minimum ≤ maximum.
effects: The interval is set to [minimum,maximum] and variance and expec-

tation are computed.

virtual ~Random()

A destructor. Has no effect.

Random(const Random& right)

A copy constructor.
effects: Internal state is copied.

Random& operator=(const Random& right)

Assignment operator.
effects: Internal state is copied.
returns: Copied value.

virtual long double operator()()

The method is derived from AbstractRandomGenerator.
effects: Next random number is generated.
returns: Floating point random number in [minimum, maximum].

virtual long long Rand()

The method is derived from AbstractRandomGenerator.
effects: Next random number is generated.
returns: Integer random number in [0, 232).

virtual long long Rand(long long max)

The method is derived from AbstractRandomGenerator.
effects: Next random number is generated.
returns: Integer random number in [0,max).

virtual void Seed(long long seed)

3 THE SOFTWARE 47

The method is derived from from AbstractRandomGenerator.
effects: The generator is seeded with seed.
requires: seed ≥ 0.
returns: void.

virtual long double Expectation() const

The method is derived from AbstractRandomGenerator.
guarantees: Internal state is not changed.
returns: The expectation of the generated floating point numbers.

virtual long double Variance() const

The method is derived from AbstractRandomGenerator.
guarantees: Internal state is not changed.
returns: The variance of the generated floating point numbers.

virtual long double Minimum() const

The method is derived from AbstractRandomGenerator.
guarantees: Internal state is not changed.
returns: The minimum possible value of the generated floating point numbers.

virtual long double Maximum() const

The method is derived from AbstractRandomGenerator.
guarantees: Internal state is not changed.
returns: The maximum possible value of the generated floating point numbers.

4 NUMERICAL AND GRAPHICAL RESULTS 48

4 Numerical and graphical results

4.1 Minimizing the risk

4.1.1 λ = 0.5, δ2 = 1
12 (corresponding to white noise in [−0.5, 0.5])

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 5: Data size = 1024, s = 10, j0 = 3, j1 = 10

4 NUMERICAL AND GRAPHICAL RESULTS 49

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 6: Data size = 1024, s = 8, j0 = 3, j1 = 10

4 NUMERICAL AND GRAPHICAL RESULTS 50

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 7: Data size = 1024, s = 5, j0 = 3, j1 = 10

4 NUMERICAL AND GRAPHICAL RESULTS 51

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 8: Data size = 1024, s = 3, j0 = 3, j1 = 10

4 NUMERICAL AND GRAPHICAL RESULTS 52

4.1.2 λ = 0.9, δ2 = 1
12 (corresponding to white noise in [−0.5, 0.5])

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 9: Data size = 1024, s = 10, j0 = 3, j1 = 10

4 NUMERICAL AND GRAPHICAL RESULTS 53

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 10: Data size = 512, s = 8, j0 = 2, j1 = 9

4 NUMERICAL AND GRAPHICAL RESULTS 54

4.1.3 λ = 0.5, δ2 = 1
300 (corresponding to white noise in [−0.1, 0.1])

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 11: Data size = 512, s = 15, j0 = 2, j1 = 9

4 NUMERICAL AND GRAPHICAL RESULTS 55

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 12: Data size = 512, s = 10, j0 = 2, j1 = 9

4 NUMERICAL AND GRAPHICAL RESULTS 56

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 13: Data size = 512, s = 8, j0 = 2, j1 = 9

4 NUMERICAL AND GRAPHICAL RESULTS 57

4.2 Minimizing the risk at each level

4.2.1 λ = 0.5, δ2 = 1
12 (corresponding to white noise in [−0.5, 0.5])

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 14: Data size = 1024, j0 = 3, j1 = 10

4 NUMERICAL AND GRAPHICAL RESULTS 58

4.2.2 λ = 0.5, δ2 = 1
300 (corresponding to white noise in [−0.1, 0.1])

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 15: Data size = 1024, j0 = 3, j1 = 10

4 NUMERICAL AND GRAPHICAL RESULTS 59

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 16: Data size = 32 x 32, j0 = 1, j1 = 5

4 NUMERICAL AND GRAPHICAL RESULTS 60

4.2.3 λ = 0.9, δ2 = 1
300 (corresponding to white noise in [−0.1, 0.1])

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 17: Data size = 1024, j0 = 3, j1 = 10

4 NUMERICAL AND GRAPHICAL RESULTS 61

4.2.4 λ = 0.3, δ2 = 1
300 (corresponding to white noise in [−0.1, 0.1])

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 18: Data size = 1024, j0 = 3, j1 = 10

4 NUMERICAL AND GRAPHICAL RESULTS 62

4.3 Equalizing ||f̃ ||Bs
pq

to ||f ||Bs
pq

at each wavelet level

4.3.1 δ2 = 1
12(corresponding to white noise in [−0.5, 0.5])

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 19: Data size = 1024, ||f̃ ||Bs
0.50.5

= ||f ||Bs
0.50.5

, j0 = 3, j1 = 10

4 NUMERICAL AND GRAPHICAL RESULTS 63

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 20: Data size = 1024, ||f̃ ||Bs
1.51.5

= ||f ||Bs
1.51.5

, j0 = 3, j1 = 10

4 NUMERICAL AND GRAPHICAL RESULTS 64

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 21: Data size = 1024, ||f̃ ||Bs
22

= ||f ||Bs
22

, j0 = 3, j1 = 10

4 NUMERICAL AND GRAPHICAL RESULTS 65

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 22: Data size = 1024, ||f̃ ||Bs
2.52.5

= ||f ||Bs
0.50.5

, j0 = 3, j1 = 10

4 NUMERICAL AND GRAPHICAL RESULTS 66

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 23: Data size = 1024, ||f̃ ||Bs
55

= ||f ||Bs
55

, j0 = 3, j1 = 10

4 NUMERICAL AND GRAPHICAL RESULTS 67

4.3.2 δ2 = 1
300(corresponding to white noise in [−0.1, 0.1])

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 24: Data size = 1024, ||f̃ ||Bs
0.50.5

= ||f ||Bs
0.50.5

, j0 = 3, j1 = 10

4 NUMERICAL AND GRAPHICAL RESULTS 68

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 25: Data size = 1024, ||f̃ ||Bs
1.51.5

= ||f ||Bs
1.51.5

, j0 = 3, j1 = 10

4 NUMERICAL AND GRAPHICAL RESULTS 69

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 26: Data size = 1024, ||f̃ ||Bs
22

= ||f ||Bs
22

, j0 = 3, j1 = 10

4 NUMERICAL AND GRAPHICAL RESULTS 70

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 27: Data size = 128 x 128, ||f̃ ||Bs
0.50.5

= ||f ||Bs
0.50.5

, j0 = 3, j1 = 10

4 NUMERICAL AND GRAPHICAL RESULTS 71

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 28: Data size = 128 x 128, ||f̃ ||Bs
22

= ||f ||Bs
22

, j0 = 3, j1 = 10

4 NUMERICAL AND GRAPHICAL RESULTS 72

(a) Original data (b) Noisy data

(c) Denoised data (d) Error

Figure 29: Data size = 128 x 128, ||f̃ ||Bs
55

= ||f ||Bs
55

, j0 = 3, j1 = 10

REFERENCES 73

References

[1] U. Amato and D.T. Vuza. Besov regularization, thresholding and
wavelets for smoothing data. Numer. Funct. Anal and Optimiz.,
18(5&6) (1997), 461-493.

[2] U. Amato and D.T. Vuza. Wavelet regularization for smoothing
data. Techn.Report CNR 108/1994, Instituto per Applicazioni della
Matematica (1994).

[3] A. Antoniadis. Smoothing noisy data with coiflets. Statistica Sinica,
4 (1994), 651-678.

[4] A. Antoniadis. Smoothing noisy data with tapered coiflet series.
Scand. J. Statist., 23 (1996), 313-330.

[5] P.M. Anselone and P.J. Laurent. A general method for the construc-
tion of interpolating or smoothing spline-function. Numerische Math.,
12, (1968), 66-82.

[6] A. Barron, L. Birgé and P. Massart. Risk bounds for model selection
via penalization. Preprint. (1995).

[7] L. Birgé and P. Massart. From model selection to adaptive estimation.
Festschr. for Lucien Le Cam. Springer: New York (1997), 55-87.

[8] A. W. Bowman, An alternative method of cross-validation for the
smoothing of density estimates. Biometrika, 71, (1984), 353-360.

[9] Breiman, L., Better subset regression using the nonnegative garrote,
Technometrics 37(4) (1995), 373–384.

[10] A. Cohen, W. Dahmen, R.A. Devore. Multiscale decompositions on
bounded domains. Trans. Amer. Math. Soc., (To appear.)

[11] A. Cohen, I. Daubechies, P. Vial. Wavelets and fast wavelet trans-
forms on the interval. Appl. Comput. Harmon. Anal., 1, (1994), 54-81.

[12] Cohen, A., Wavelet methods in numerical analysis, in Handbook of

Numerical Analysis, vol. VII, P. G. Ciarlet and J. L. Lions (eds.),
Elsevier, Amsterdam, 2000.

REFERENCES 74

[13] P. Craven and G. Wahba. Smoothing noisy data with spline functions.
Numer. Math., 31 (1979), 377-403.

[14] D.D. Cox. Approximation of method of regularization estimators.
Annals of Statistics, 16, (1988), 694-713.

[15] W. Dahmen. Wavelet and multiscale methods for operator equations.
Acta Numerica, (1997), 55-228.

[16] I. Daubechies. Ten Lectures on Wavelets. SIAM : Philadelphia, 1992.

[17] Dechevsky L. T., Atomic decomposition of function spaces and frac-
tional integral and differential operators, Fractional Calculus & Ap-

plied Analysis, 2(4) (1999), 367–381.

[18] L. T. Dechevsky, S. I. Penev. On shape-preserving probabilistic
wavelet approximators. Stochast. Anal. and Appl., 15 (2), (1997),
187-215.

[19] L. T. Dechevsky, S. I. Penev. On shape-preserving wavelet estimators
of cumulative distribution functions and densities. Stochast. Anal.
and Appl., 16 (3), (1998), 428-469.

[20] L.T. Dechevsky and S.I. Penev. Weak penalized wavelet estimation.
Research Report S99-1, Department of Statistics, School of Mathe-
matics, University of New South Wales, Sydney, 1999.

[21] Dechevsky, L. T., and J. Gundersen, Isometric conversion between
dimension and resolution, submitted.

[22] Dechevsky L. T., J. O. Ramsay, and S. I. Penev, Penalized wavelet
estimation with Besov regularity constriants, Math. Balkanica (N.

S.), 13(3-4) (1999), 257–376.

[23] Dechevsky L. T., MacGibbon B., Dobrev K. Cross validation in Besov

spaces, for multivariate density estimation and nonparametric regres-

sion with random design, in preparation

[24] Delyon B. and Juditsky A. On Minimax Wavelet Estimators Applied

and computational harmonic analysis 3, 215-228 (1996).

REFERENCES 75

[25] R.A. DeVore, G. Kyriazis, D. Leviatan and V.M. Tikhomirov. Com-
pression and nonlinear n-widths. J. Adv. Comp. Math., 1, (1993),
197-214.

[26] R.A. DeVore and B.J. Lucier. Fast wavelet techniques for near-
optimal image processing. In Proc. IEEE Military Communications
Conf. IEEE Communications Society : New York (1992).

[27] Donoho, D. L. and I. M. Johnstone, Ideal spatial adaptation via
wavelet shrinkage, Biometrika, 81(3) (1994), 425–455.

[28] Donoho, D. L. and I. M. Johnstone, Minimax estimation via wavelet
shrinkage, Ann. Statist., 26(3) (1998), 879–921.

[29] Donoho, D. L., I. M. Johnstone, G. Kerkyacharian, and D. Picard,
Wavelet shrinkage: asymptopia? (with discussion), J. Roy. Statist.
Soc. Ser. B, 57(2) (1995), 301–369.

[30] Gao, H.-Y., and A. G. Bruce, WaveShrink with firm shrinkage, Sta-

tist. Sinica, 7(4) (1997), 855–874.

[31] T. Gasser and H.-J. Müller. Kernel estimation of regression functions.
In Gasser, T. and Rosenblatt, M. (Eds.). Smoothing techniques for
curve estimation. Lecture Notes in Math., 757 Springer : Heisenberg,
(1979), 23-68.

[32] James, W., and C. Stein, Estimation with quadratic loss, Math. Sta-
tist. Probab. 1, (1961), 311–319.

[33] M. Jansen, M. Malfait and A. Bultheel. Generalized cross validation
for wavelet thresholding. Signal Processing, 56, (1997), 33-44.

[34] Mallat, S. G., A Wavelet Tour of Signal Processing, 2nd ed., Acad-
emic Press, London, 2001.

[35] G. Nason. Wavelet shrinkage using cross validation. J. Royal Statist.
Soc., Ser B, 58(2), (1996), 463-479.

[36] M. Rudemo, Empirical choice of histograms and kernel density esti-
mators, Scand. J. Statist., 9, (1982), 65-78.

[37] Stein, C., Estimation of the mean of multivariate normal distribution,
Ann. Statist., 9, (1981), 1135–1151.

REFERENCES 76

[38] K. Tribouley. Practical estimation of multivariate densities using
wavelet methods. Statist. Neerlandica, 49 (1995), 41-62.

[39] Vidakovic, B., Statistical Modeling by Wavelets, Wiley, New York,
1999.

[40] Wahba, G., Spline Models for Observational Data, SIAM, Philadel-
phia, 1990.

[41] F.D. Utreras. Cross-validation techniques for smoothing spline-
functions in one or two dimensions. In Gasser, T. and Rosenblatt, M.
(Eds.). Smoothing Techniques for Curve Estimation. Lecture Notes
in Math., 757. Springer : heidelberg, (1979), 196-231.

LIST OF FIGURES 77

List of Figures

1 . 10
2 . 12
3 Linear Feedback Shift Register . 24
4 The Wavelet demo application . 40
5 Data size = 1024, s = 10, j0 = 3, j1 = 10 48
6 Data size = 1024, s = 8, j0 = 3, j1 = 10 49
7 Data size = 1024, s = 5, j0 = 3, j1 = 10 50
8 Data size = 1024, s = 3, j0 = 3, j1 = 10 51
9 Data size = 1024, s = 10, j0 = 3, j1 = 10 52
10 Data size = 512, s = 8, j0 = 2, j1 = 9 53
11 Data size = 512, s = 15, j0 = 2, j1 = 9 54
12 Data size = 512, s = 10, j0 = 2, j1 = 9 55
13 Data size = 512, s = 8, j0 = 2, j1 = 9 56
14 Data size = 1024, j0 = 3, j1 = 10 . 57
15 Data size = 1024, j0 = 3, j1 = 10 . 58
16 Data size = 32 x 32, j0 = 1, j1 = 5 59
17 Data size = 1024, j0 = 3, j1 = 10 . 60
18 Data size = 1024, j0 = 3, j1 = 10 . 61
19 Data size = 1024, ||f̃ ||Bs

0.50.5
= ||f ||Bs

0.50.5
, j0 = 3, j1 = 10 62

20 Data size = 1024, ||f̃ ||Bs
1.51.5

= ||f ||Bs
1.51.5

, j0 = 3, j1 = 10 63
21 Data size = 1024, ||f̃ ||Bs

22
= ||f ||Bs

22
, j0 = 3, j1 = 10 64

22 Data size = 1024, ||f̃ ||Bs
2.52.5

= ||f ||Bs
0.50.5

, j0 = 3, j1 = 10 65
23 Data size = 1024, ||f̃ ||Bs

55
= ||f ||Bs

55
, j0 = 3, j1 = 10 66

24 Data size = 1024, ||f̃ ||Bs
0.50.5

= ||f ||Bs
0.50.5

, j0 = 3, j1 = 10 67
25 Data size = 1024, ||f̃ ||Bs

1.51.5
= ||f ||Bs

1.51.5
, j0 = 3, j1 = 10 68

26 Data size = 1024, ||f̃ ||Bs
22

= ||f ||Bs
22

, j0 = 3, j1 = 10 69
27 Data size = 128 x 128, ||f̃ ||Bs

0.50.5
= ||f ||Bs

0.50.5
, j0 = 3, j1 = 10 70

28 Data size = 128 x 128, ||f̃ ||Bs
22

= ||f ||Bs
22

, j0 = 3, j1 = 10 71
29 Data size = 128 x 128, ||f̃ ||Bs

55
= ||f ||Bs

55
, j0 = 3, j1 = 10 72

